The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

DDPPC     2-(dodecoxy-hydroxy- phosphoryl)oxyethyl...

Synonyms: AC1L3XCM, AC1Q1SNC, AR-1D7315, LS-175517, C17H38NO4P, ...
This record was replaced with 123818.
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of 2-(dodecoxy-hydroxy-phosphoryl)oxyethyl-trimethyl-azanium


High impact information on 2-(dodecoxy-hydroxy-phosphoryl)oxyethyl-trimethyl-azanium

  • We have determined by solution NMR methods the atomic resolution structure of an unphosphorylated PLN pentamer in dodecylphosphocholine micelles [6].
  • NMR structural comparison of the cytoplasmic juxtamembrane domains of G-protein-coupled CB1 and CB2 receptors in membrane mimetic dodecylphosphocholine micelles [7].
  • To investigate the nature of proposed lipid binding-induced conformational changes in apoE, we employed multidimensional heteronuclear NMR spectroscopy to determine the structure of an LDL receptor-active, 58-residue peptide comprising residues 126-183 of apoE in association with the micelle-forming lipid dodecylphosphocholine (DPC) [8].
  • Through combination of the two-dimensional NMR experiments, completed (1)H NMR assignments of were obtained, and the data were used to construct three-dimensional structures of in H(2)O and dodecylphosphocholine micelles, showing the detailed conformation change upon the interaction with the membrane anchor domain [9].
  • Using SDS and dodecylphosphocholine (DPC) to model the lipoprotein environment, the structural features responsible for LAP-20's ability to activate LCAT were studied by optical and two-dimensional 1H NMR spectroscopy [10].

Biological context of 2-(dodecoxy-hydroxy-phosphoryl)oxyethyl-trimethyl-azanium

  • Conventional 1H-NMR spectra show that most protein resonances remain unperturbed when micelles are added to solution, which argues that the overall protein conformation is maintained in the presence of SDS or DPC at the concentrations used [11].
  • Combination of these observations suggests that the overall spatial arrangement of the glucagon polypeptide chain in a lipid-water interphase is largely determined by the topology of the lipid support, in the present case the curvature of the dodecylphosphocholine micelles [12].
  • The hydrolysis of the substrate was competitively inhibited by the presence of monodispersed n-dodecylphosphorylcholine (n-C12PC) [13].

Anatomical context of 2-(dodecoxy-hydroxy-phosphoryl)oxyethyl-trimethyl-azanium


Associations of 2-(dodecoxy-hydroxy-phosphoryl)oxyethyl-trimethyl-azanium with other chemical compounds

  • The overall negatively charged surface of SDS micelles tends to induce a stronger interaction with the protein compared to the zwitterionic DPC micelles, probably due to electrostatic interactions [11].
  • With the protein in DPC (dodecylphosphocholine) micelles, we used manganous ion as an aqueous paramagnetic probe to determine the surface of crambin that is shielded by the detergent [18].
  • From NMR structural studies with the uniformly (15)N-labeled peptide, a structure of pleurocidin was determined to be in a random coil conformation in aqueous solution whereas it assumes an alpha-helical structure in TFE and in dodecylphosphocholine (DPC) micelles [19].
  • These data show that, while in water and dimethyl sulfoxide, eledoisin prefers to be in an extended chain conformation, whereas in the presence of perdeuterated dodecylphosphocholine micelles, a membrane model system, helical conformation is induced in the central core and C-terminal region (K4-M11) of the peptide [20].
  • Although the vesicle-bound conformation of melittin is similar to that occurring in a methanol solution and in dodecylphosphocholine micelles, significant differences were found in the conformation of C-terminal basic residues and the helix bend angle [21].

Gene context of 2-(dodecoxy-hydroxy-phosphoryl)oxyethyl-trimethyl-azanium


Analytical, diagnostic and therapeutic context of 2-(dodecoxy-hydroxy-phosphoryl)oxyethyl-trimethyl-azanium


  1. Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Arora, A., Abildgaard, F., Bushweller, J.H., Tamm, L.K. Nat. Struct. Biol. (2001) [Pubmed]
  2. Membrane binding motif of the P-type cardiotoxin. Dubovskii, P.V., Dementieva, D.V., Bocharov, E.V., Utkin, Y.N., Arseniev, A.S. J. Mol. Biol. (2001) [Pubmed]
  3. The membrane-proximal tryptophan-rich region of the HIV glycoprotein, gp41, forms a well-defined helix in dodecylphosphocholine micelles. Schibli, D.J., Montelaro, R.C., Vogel, H.J. Biochemistry (2001) [Pubmed]
  4. NMR and circular dichroism studies of the lantibiotic nisin in non-aqueous environments. van den Hooven, H.W., Fogolari, F., Rollema, H.S., Konings, R.N., Hilbers, C.W., van de Ven, F.J. FEBS Lett. (1993) [Pubmed]
  5. NMR studies of the major coat protein of bacteriophage M13. Structural information of gVIIIp in dodecylphosphocholine micelles. Papavoine, C.H., Aelen, J.M., Konings, R.N., Hilbers, C.W., Van de Ven, F.J. Eur. J. Biochem. (1995) [Pubmed]
  6. The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Oxenoid, K., Chou, J.J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  7. NMR structural comparison of the cytoplasmic juxtamembrane domains of G-protein-coupled CB1 and CB2 receptors in membrane mimetic dodecylphosphocholine micelles. Xie, X.Q., Chen, J.Z. J. Biol. Chem. (2005) [Pubmed]
  8. Lipid-bound structure of an apolipoprotein E-derived peptide. Raussens, V., Slupsky, C.M., Sykes, B.D., Ryan, R.O. J. Biol. Chem. (2003) [Pubmed]
  9. Identification of the substrate interaction site in the N-terminal membrane anchor segment of thromboxane A2 synthase by determination of its substrate analog conformational changes using high resolution NMR technique. So, S.P., Li, D., Ruan, K.H. J. Biol. Chem. (2000) [Pubmed]
  10. Structural studies of a peptide activator of human lecithin-cholesterol acyltransferase. Buchko, G.W., Treleaven, W.D., Dunne, S.J., Tracey, A.S., Cushley, R.J. J. Biol. Chem. (1996) [Pubmed]
  11. Interaction of epidermal growth factor with micelles monitored by photochemically induced dynamic nuclear polarization-1H NMR spectroscopy. Mayo, K.H., De Marco, A., Menegatti, E., Kaptein, R. J. Biol. Chem. (1987) [Pubmed]
  12. Conformation of glucagon in a lipid-water interphase by 1H nuclear magnetic resonance. Braun, W., Wider, G., Lee, K.H., Wüthrich, K. J. Mol. Biol. (1983) [Pubmed]
  13. Kinetics of the hydrolysis of monodispersed dihexanoyllecithin catalyzed by a cobra (Naja naja atra) venom phospholipase A2. Teshima, K., Samejima, Y., Kawauchi, S., Ikeda, K., Hayashi, K. J. Biochem. (1985) [Pubmed]
  14. Physicochemical characterization of dodecylphosphocholine/palmitoyllysophosphatidic acid/myelin basic protein complexes. Mendz, G.L., Miller, D.J., Jamie, I.M., White, J.W., Brown, L.R., Ralston, G.B., Kaplin, I.J. Biochemistry (1991) [Pubmed]
  15. Structural features of the final intermediate in the biosynthesis of the lantibiotic nisin. Influence of the leader peptide. van den Hooven, H.W., Rollema, H.S., Siezen, R.J., Hilbers, C.W., Kuipers, O.P. Biochemistry (1997) [Pubmed]
  16. Interaction mode of n-dodecylphosphorylcholine, a substrate analogue, with bovine pancreas phospholipase A2 as determined by X-ray crystal analysis. Tomoo, K., Ohishi, H., Doi, M., Ishida, T., Inoue, M., Ikeda, K., Mizuno, H. Biochem. Biophys. Res. Commun. (1992) [Pubmed]
  17. Dodecylphosphocholine-mediated enhancement of paracellular permeability and cytotoxicity in Caco-2 cell monolayers. Liu, D.Z., LeCluyse, E.L., Thakker, D.R. Journal of pharmaceutical sciences. (1999) [Pubmed]
  18. Three-dimensional structure of the water-insoluble protein crambin in dodecylphosphocholine micelles and its minimal solvent-exposed surface. Ahn, H.C., Juranić, N., Macura, S., Markley, J.L. J. Am. Chem. Soc. (2006) [Pubmed]
  19. Structural characterization of the antimicrobial peptide pleurocidin from winter flounder. Syvitski, R.T., Burton, I., Mattatall, N.R., Douglas, S.E., Jakeman, D.L. Biochemistry (2005) [Pubmed]
  20. Solution structure of the tachykinin peptide eledoisin. Grace, R.C., Chandrashekar, I.R., Cowsik, S.M. Biophys. J. (2003) [Pubmed]
  21. Vesicle-bound conformation of melittin: transferred nuclear Overhauser enhancement analysis in the presence of perdeuterated phosphatidylcholine vesicles. Okada, A., Wakamatsu, K., Miyazawa, T., Higashijima, T. Biochemistry (1994) [Pubmed]
  22. Structural similarities of micelle-bound peptide YY (PYY) and neuropeptide Y (NPY) are related to their affinity profiles at the Y receptors. Lerch, M., Mayrhofer, M., Zerbe, O. J. Mol. Biol. (2004) [Pubmed]
  23. Key motif to gain selectivity at the neuropeptide Y5-receptor: structure and dynamics of micelle-bound [Ala31, Pro32]-NPY. Bader, R., Rytz, G., Lerch, M., Beck-Sickinger, A.G., Zerbe, O. Biochemistry (2002) [Pubmed]
  24. Structure of a biologically active fragment of human serum apolipoprotein C-II in the presence of sodium dodecyl sulfate and dodecylphosphocholine. Storjohann, R., Rozek, A., Sparrow, J.T., Cushley, R.J. Biochim. Biophys. Acta (2000) [Pubmed]
  25. NMR solution structure of the glucagon antagonist [desHis1, desPhe6, Glu9]glucagon amide in the presence of perdeuterated dodecylphosphocholine micelles. Ying, J., Ahn, J.M., Jacobsen, N.E., Brown, M.F., Hruby, V.J. Biochemistry (2003) [Pubmed]
  26. Characterization of a membrane protein folding motif, the Ser zipper, using designed peptides. North, B., Cristian, L., Fu Stowell, X., Lear, J.D., Saven, J.G., Degrado, W.F. J. Mol. Biol. (2006) [Pubmed]
  27. Total chemical synthesis of the integral membrane protein influenza A virus M2: role of its C-terminal domain in tetramer assembly. Kochendoerfer, G.G., Salom, D., Lear, J.D., Wilk-Orescan, R., Kent, S.B., DeGrado, W.F. Biochemistry (1999) [Pubmed]
  28. Conformation of tachyplesin I from Tachypleus tridentatus when interacting with lipid matrices. Park, N.G., Lee, S., Oishi, O., Aoyagi, H., Iwanaga, S., Yamashita, S., Ohno, M. Biochemistry (1992) [Pubmed]
WikiGenes - Universities