The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Ubiquinone-9     2,3-dimethoxy-5-methyl-6- [(2E,6E,10E,14E...

Synonyms: coenzyme-Q9, Ubiquinone-45, Ubiquinone 9, Ubiquinone 45, Ubiquinone Q9, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of NSC 226993

  • The young rat hearts showed a 30% reduction in the mitochondrial levels of CoQ9 after ischemia and reperfusion with respect to the preischemic values (P < 0.05 and P < 0.01, respectively) [1].
  • The electron transport chain of the gram-negative bacterium Pseudomonas aeruginosa, grown aerobically, contained a number of primary dehydrogenases and respiratory components (soluble flavin, bound flavin, coenzyme Q9, heme b, heme c, and cytochrome o) in membrane particles of the organism [2].
 

High impact information on NSC 226993

 

Anatomical context of NSC 226993

  • In addition, 2 potential sources of H2O2 were tentatively identified as: (a) the enzyme fumarate reductase; and (b) a succinate-dependent site, which may be the semiquinone form of Coenzyme Q9, as in mammalian mitochondria [6].
  • Mean coenzyme Q9 (CoQ9) levels in all dose groups were slightly decreased relative to controls in type II skeletal muscle, although the difference was not significantly different in most cases [7].
  • Heart remodelling was associated with the decrease of coenzyme Q9 and Q10 concentrations in the left ventricle [8].
  • The data suggest that a significant decrease of coenzyme Q9, a potent antioxidant involved in the elimination of mitochondria-generated reactive oxygen species, may be responsible for an increased susceptibility of diabetic heart mitochondria to oxidative damage [9].
  • Serum and tissue coenzyme Q9 in rats with thyroid dysfunctions [10].
 

Associations of NSC 226993 with other chemical compounds

 

Gene context of NSC 226993

  • After dilution, a known volume of sample solution containing Q10 and the internal standard, coenzyme Q9 (Q9), was directly injected into the HPLC system [15].
  • These results suggest that CoQ9 and CoQ10 may play different roles in their physiological actions as antioxidant or component of the mitochondrial respiratory chain [16].
 

Analytical, diagnostic and therapeutic context of NSC 226993

  • Lipids were extracted with petroleum ethermethanol, and the reduced and oxidized forms of coenzyme Q9 and Q10 were separated and quantified by reversed-phase HPLC [17].
  • At the end of reperfusion, the biosynthesis of mitochondrial CoQ9 and CoQ10 was higher in the young rats (P < 0.05), and lower in the aged rats (P < 0.05), with respect to the aerobic perfusion [1].
  • We also evaluated the levels of coenzyme Q9 (CoQ9) and CoQ10 in different brain regions and in visceral tissues of rats before and after oral administration of CoQ10 [18].

References

  1. Adaptive changes in coenzyme Q biosynthesis to myocardial reperfusion in young and aged rats. Muscari, C., Biagetti, L., Stefanelli, C., Giordano, E., Guarnieri, C., Caldarera, C.M. J. Mol. Cell. Cardiol. (1995) [Pubmed]
  2. Membrane-bound respiratory chain of Pseudomonas aeruginosa grown aerobically. Matsushita, K., Yamada, M., Shinagawa, E., Adachi, O., Ameyama, M. J. Bacteriol. (1980) [Pubmed]
  3. Reproductive fitness and quinone content of Caenorhabditis elegans clk-1 mutants fed coenzyme Q isoforms of varying length. Jonassen, T., Davis, D.E., Larsen, P.L., Clarke, C.F. J. Biol. Chem. (2003) [Pubmed]
  4. Lipid imaging by gold cluster time-of-flight secondary ion mass spectrometry: application to Duchenne muscular dystrophy. Touboul, D., Brunelle, A., Halgand, F., De La Porte, S., Laprévote, O. J. Lipid Res. (2005) [Pubmed]
  5. Changes in mitochondrial and microsomal rat liver coenzyme Q9 and Q10 content induced by dietary fat and endogenous lipid peroxidation. Huertas, J.R., Battino, M., Lenaz, G., Mataix, F.J. FEBS Lett. (1991) [Pubmed]
  6. Succinate-dependent metabolism in Trypanosoma cruzi epimastigotes. Denicola-Seoane, A., Rubbo, H., Prodanov, E., Turrens, J.F. Mol. Biochem. Parasitol. (1992) [Pubmed]
  7. Evaluation of ubiquinone concentration and mitochondrial function relative to cerivastatin-induced skeletal myopathy in rats. Schaefer, W.H., Lawrence, J.W., Loughlin, A.F., Stoffregen, D.A., Mixson, L.A., Dean, D.C., Raab, C.E., Yu, N.X., Lankas, G.R., Frederick, C.B. Toxicol. Appl. Pharmacol. (2004) [Pubmed]
  8. L-arginine fails to protect against myocardial remodelling in L-NAME-induced hypertension. Simko, F., Luptak, I., Matuskova, J., Krajcirovicova, K., Sumbalova, Z., Kucharska, J., Gvozdjakova, A., Simko, J., Babal, P., Pechanova, O., Bernatova, I. Eur. J. Clin. Invest. (2005) [Pubmed]
  9. Diabetes and mitochondrial oxidative stress: a study using heart mitochondria from the diabetic Goto-Kakizaki rat. Santos, D.L., Palmeira, C.M., Seiça, R., Dias, J., Mesquita, J., Moreno, A.J., Santos, M.S. Mol. Cell. Biochem. (2003) [Pubmed]
  10. Serum and tissue coenzyme Q9 in rats with thyroid dysfunctions. Ikeda, S., Hamada, N., Morii, H., Inaba, M., Yamakawa, J. Horm. Metab. Res. (1984) [Pubmed]
  11. Calcium-dependent mitochondrial permeability transition is augmented in the kidney of Goto-Kakizaki diabetic rat. Oliveira, P.J., Esteves, T.C., Seiça, R., Moreno, A.J., Santos, M.S. Diabetes Metab. Res. Rev. (2004) [Pubmed]
  12. Virgin olive oil and coenzyme Q10 protect heart mitochondria from peroxidative damage during aging. Huertas, J.R., Martinez-Velasco, E., Ibáñez, S., López-Frias, M., Ochoa, J.J., Quiles, J., Parenti Castelli, G., Mataix, J., Lenaz, G. Biofactors (1999) [Pubmed]
  13. Determination of coenzyme Q10 in human seminal plasma by high-performance liquid chromatography and its clinical application. Li, K., Shi, Y., Chen, S., Li, W., Shang, X., Huang, Y. Biomed. Chromatogr. (2006) [Pubmed]
  14. Muscle coenzyme Q: a potential test for mitochondrial activity and redox status. Miles, L., Miles, M.V., Tang, P.H., Horn, P.S., Wong, B.L., DeGrauw, T.J., Morehart, P.J., Bove, K.E. Pediatric neurology. (2005) [Pubmed]
  15. Determination of coenzyme Q10 in over-the-counter dietary supplements by high-performance liquid chromatography with coulometric detection. Tang, P.H. Journal of AOAC International. (2006) [Pubmed]
  16. Changes in the content and intracellular distribution of coenzyme Q homologs in rabbit liver during growth. Matsura, T., Yamada, K., Kawasaki, T. Biochim. Biophys. Acta (1991) [Pubmed]
  17. Uptake of dietary coenzyme Q supplement is limited in rats. Zhang, Y., Aberg, F., Appelkvist, E.L., Dallner, G., Ernster, L. J. Nutr. (1995) [Pubmed]
  18. Primary coenzyme Q10 deficiency and the brain. Naini, A., Lewis, V.J., Hirano, M., DiMauro, S. Biofactors (2003) [Pubmed]
 
WikiGenes - Universities