The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

AC1LD8WR     [1-[[4-(2,3- dihexadecanoyloxypropoxy- oxido...

Synonyms: cardiolipin, (E.coli)
This record was replaced with 644276.
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of 2,3-dipalmitoyloxypropoxy-[4-(2,3-dipalmitoyloxypropoxy-hydroxy-phosphoryl)oxy-2-hydroxy-butoxy]phosphinic acid


High impact information on 2,3-dipalmitoyloxypropoxy-[4-(2,3-dipalmitoyloxypropoxy-hydroxy-phosphoryl)oxy-2-hydroxy-butoxy]phosphinic acid


Biological context of 2,3-dipalmitoyloxypropoxy-[4-(2,3-dipalmitoyloxypropoxy-hydroxy-phosphoryl)oxy-2-hydroxy-butoxy]phosphinic acid


Anatomical context of 2,3-dipalmitoyloxypropoxy-[4-(2,3-dipalmitoyloxypropoxy-hydroxy-phosphoryl)oxy-2-hydroxy-butoxy]phosphinic acid


Associations of 2,3-dipalmitoyloxypropoxy-[4-(2,3-dipalmitoyloxypropoxy-hydroxy-phosphoryl)oxy-2-hydroxy-butoxy]phosphinic acid with other chemical compounds


Gene context of 2,3-dipalmitoyloxypropoxy-[4-(2,3-dipalmitoyloxypropoxy-hydroxy-phosphoryl)oxy-2-hydroxy-butoxy]phosphinic acid


Analytical, diagnostic and therapeutic context of 2,3-dipalmitoyloxypropoxy-[4-(2,3-dipalmitoyloxypropoxy-hydroxy-phosphoryl)oxy-2-hydroxy-butoxy]phosphinic acid


  1. Increased rates of lipid exchange between Mycoplasma capricolum membranes and vesicles in relation to the propensity of forming nonbilayer lipid structures. Bittman, R., Clejan, S., Hui, S.W. J. Biol. Chem. (1990) [Pubmed]
  2. Altered subcellular and submitochondrial localization of CTP:phosphatidate cytidylyltransferase in the Morris 7777 hepatoma. Hostetler, K.Y., Zenner, B.D., Morris, H.P. J. Lipid Res. (1978) [Pubmed]
  3. Lipid dependence and activity control of phosphatidylserine synthase from Escherichia coli. Linde, K., Gröbner, G., Rilfors, L. FEBS Lett. (2004) [Pubmed]
  4. Lipids in the classification of Nocardioides: reclassification of Arthrobacter simplex (Jensen) lochhead in the genus Nocardioides (Prauser) emend. O'Donnell et al. as Nocardioides simplex comb. nov. O'Donnell, A.G., Goodfellow, M., Minnikin, D.E. Arch. Microbiol. (1982) [Pubmed]
  5. Increased mole fraction of arachidonic acid in bronchial phospholipids in patients with cystic fibrosis. Gilljam, H., Strandvik, B., Ellin, A., Wiman, L.G. Scand. J. Clin. Lab. Invest. (1986) [Pubmed]
  6. Axonal transport of the mitochondria-specific lipid, diphosphatidylglycerol, in the rat visual system. Blaker, W.D., Goodrum, J.F., Morell, P. J. Cell Biol. (1981) [Pubmed]
  7. Diphosphatidylglycerol is required for optimal activity of beef heart cytochrome c oxidase. Vik, S.B., Georgevich, G., Capaldi, R.A. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  8. Phospholipids inhibit lipopolysaccharide (LPS)-induced cell activation: a role for LPS-binding protein. Mueller, M., Brandenburg, K., Dedrick, R., Schromm, A.B., Seydel, U. J. Immunol. (2005) [Pubmed]
  9. Distribution of membrane phospholipids in the crystalline lens. Greiner, J.V., Auerbach, D.B., Leahy, C.D., Glonek, T. Invest. Ophthalmol. Vis. Sci. (1994) [Pubmed]
  10. Conversion of diphosphatidylglycerol to bis(monoacylglyceryl)phosphate by lysosomes. Poorthuis, B.J., Hostetler, K.Y. J. Lipid Res. (1978) [Pubmed]
  11. Lipid remodelling during epididymal maturation of rat spermatozoa. Enrichment in plasmenylcholines containing long-chain polyenoic fatty acids of the n-9 series. Aveldaño, M.I., Rotstein, N.P., Vermouth, N.T. Biochem. J. (1992) [Pubmed]
  12. Lipids and lipoteichoic acid of autolysis-defective Streptococcus faecium strains. Shungu, D.L., Cornett, J.B., Shockman, G.D. J. Bacteriol. (1980) [Pubmed]
  13. Lipids of stages in the life-cycle of the cestode Spirometra mansonoides. Beach, D.H., Mueller, J.F., Holz, G.G. Mol. Biochem. Parasitol. (1980) [Pubmed]
  14. Production and structure elucidation of glycoglycerolipids from a marine sponge-associated microbacterium species. Wicke, C., Hüners, M., Wray, V., Nimtz, M., Bilitewski, U., Lang, S. J. Nat. Prod. (2000) [Pubmed]
  15. Differences in the kinetics of axonal transport for individual lipid classes in rat sciatic nerve. Toews, A.D., Saunders, B.F., Blaker, W.D., Morell, P. J. Neurochem. (1983) [Pubmed]
  16. Inhibition of diphosphatidylglycerol synthesis by u.v. A radiations in N.C.T.C. 2544 human keratinocytes. Djavaheri-Mergny, M., Mora, L., Mazière, C., Auclair, M., Santus, R., Dubertret, L., Mazière, J.C. Biochem. J. (1994) [Pubmed]
  17. Effect of membrane cholesterol on action of phospholipase A2 in Mycoplasma mycoides var. Capri. Evidence for lysophospholipase activity. Rigaud, J.L., Leblanc, G. Eur. J. Biochem. (1980) [Pubmed]
  18. Partial purification of diphosphatidylglycerol synthetase from liver mitochondrial membranes. McMurray, W.C., Jarvis, E.C. Can. J. Biochem. (1980) [Pubmed]
  19. Conversion of phospholipids to free fatty acids in response to acquisition of polymyxin resistance in Pseudomonas aeruginosa. Champlin, F.R., Gilleland, H.E., Conrad, R.S. Antimicrob. Agents Chemother. (1983) [Pubmed]
  20. Schineria larvae gen. nov., sp. nov., isolated from the 1st and 2nd larval stages of Wohlfahrtia magnifica (Diptera: Sarcophagidae). Tóth, E., Kovács, G., Schumann, P., Kovács, A.L., Steiner, U., Halbritter, A., Márialigeti, K. Int. J. Syst. Evol. Microbiol. (2001) [Pubmed]
  21. Ca++-induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers. Miller, C., Racker, E. J. Membr. Biol. (1976) [Pubmed]
  22. Composition of lipids bound to pure cytochrome P-450 of cholesterol side-chain cleavage enzyme from bovine adrenocortical mitochondria. Hall, P.F., Watanuki, M., Degroot, J., Rouser, G. Lipids (1979) [Pubmed]
  23. Effect of erucic acid on the phospholipid molecular species compositions of the rat heart and liver. Yasuda, S., Kitagawa, Y., Sugimoto, E., Kito, M. J. Biochem. (1980) [Pubmed]
  24. Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash-waters. Ntougias, S., Russell, N.J. Int. J. Syst. Evol. Microbiol. (2001) [Pubmed]
  25. Effects of hormone replacement therapy on the phospholipid composition of high density lipoproteins in postmenopausal women. Papapanagiotou, A., Koufali, M.M., Zachari, A., Charalabidou, C., Kalofoutis, A. Journal of obstetrics and gynaecology : the journal of the Institute of Obstetrics and Gynaecology. (2001) [Pubmed]
  26. Two unusual glycerophospholipids from a filamentous fungus, Absidia corymbifera. Batrakov, S.G., Konova, I.V., Sheichenko, V.I., Esipov, S.E., Galanina, L.A. Biochim. Biophys. Acta (2001) [Pubmed]
  27. Diphosphatidylglycerol in experimental acute alveolar injury in the dog. Liau, D.F., Barrett, C.R., Bell, A.L., Cernansky, G., Ryan, S.F. J. Lipid Res. (1984) [Pubmed]
  28. Hepatoma, host liver, and normal rat liver phospholipids as affected by diet. Wood, R. Lipids (1975) [Pubmed]
WikiGenes - Universities