The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

SureCN21913     N-methyl-7H-purin-6-amine

Synonyms: SureCN21914, AGN-PC-0DBEE5, AG-K-73883, CHEBI:28871, HMDB02099, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of N6-Methyladenine


High impact information on N6-Methyladenine


Chemical compound and disease context of N6-Methyladenine


Biological context of N6-Methyladenine


Anatomical context of N6-Methyladenine


Associations of N6-Methyladenine with other chemical compounds


Gene context of N6-Methyladenine


Analytical, diagnostic and therapeutic context of N6-Methyladenine


  1. Methylation and processing of transfer ribonucleic acid in mammalian and bacterial cells. Munns, T.W., Sims, H.F. J. Biol. Chem. (1975) [Pubmed]
  2. Expression of Escherichia coli dam gene in Bacillus subtilis provokes DNA damage response: N6-methyladenine is removed by two repair pathways. Guha, S., Guschlbauer, W. Nucleic Acids Res. (1992) [Pubmed]
  3. Salmonella typhimurium SA host specificity system is based on deoxyribonucleic acid-adenine methylation. Hattman, S., Schlagman, S., Goldstein, L., Frohlich, M. J. Bacteriol. (1976) [Pubmed]
  4. Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. MacNeil, D.J. J. Bacteriol. (1988) [Pubmed]
  5. Absence in Bacillus subtilis and Staphylococcus aureus of the sequence-specific deoxyribonucleic acid methylation that is conferred in Escherichia coli K-12 by the dam and dcm enzymes. Dreiseikelmann, B., Wackernagel, W. J. Bacteriol. (1981) [Pubmed]
  6. Transformation of Tetrahymena thermophila with hypermethylated rRNA genes. Karrer, K.M., Yao, M.C. Mol. Cell. Biol. (1988) [Pubmed]
  7. Site-specific methylation of adenine in the nuclear genome of a eucaryote, Tetrahymena thermophila. Harrison, G.S., Findly, R.C., Karrer, K.M. Mol. Cell. Biol. (1986) [Pubmed]
  8. On the mechanism of DNA-adenine methylase. Pogolotti, A.L., Ono, A., Subramaniam, R., Santi, D.V. J. Biol. Chem. (1988) [Pubmed]
  9. Analysis and in vitro localization of internal methylated adenine residues in dihydrofolate reductase mRNA. Rana, A.P., Tuck, M.T. Nucleic Acids Res. (1990) [Pubmed]
  10. Selection against dam methylation sites in the genomes of DNA of enterobacteriophages. McClelland, M. J. Mol. Evol. (1984) [Pubmed]
  11. DNA methylation in thermophilic bacteria: N4-methylcytosine, 5-methylcytosine, and N6-methyladenine. Ehrlich, M., Gama-Sosa, M.A., Carreira, L.H., Ljungdahl, L.G., Kuo, K.C., Gehrke, C.W. Nucleic Acids Res. (1985) [Pubmed]
  12. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. Malone, T., Blumenthal, R.M., Cheng, X. J. Mol. Biol. (1995) [Pubmed]
  13. Properties of 3-methyladenine-DNA glycosylase from Escherichia coli. Riazuddin, S., Lindahl, T. Biochemistry (1978) [Pubmed]
  14. Influence of local duplex stability and N6-methyladenine on uracil recognition by mismatch-specific uracil-DNA glycosylase (Mug). Valinluck, V., Liu, P., Burdzy, A., Ryu, J., Sowers, L.C. Chem. Res. Toxicol. (2002) [Pubmed]
  15. Immunochemical detection of N6-methyladenine in DNA. Störl, H.J., Simon, H., Barthelmes, H. Biochim. Biophys. Acta (1979) [Pubmed]
  16. Recognition sequence of the dam methylase of Escherichia coli K12 and mode of cleavage of Dpn I endonuclease. Geier, G.E., Modrich, P. J. Biol. Chem. (1979) [Pubmed]
  17. 6-N-substituted derivatives of adenine arabinoside as selective inhibitors of varicella-zoster virus. Koszalka, G.W., Averett, D.R., Fyfe, J.A., Roberts, G.B., Spector, T., Biron, K., Krenitsky, T.A. Antimicrob. Agents Chemother. (1991) [Pubmed]
  18. Two intertwined methylation activities of the MmeI restriction-modification class-IIS system from Methylophilus methylotrophus. Tucholski, J., Zmijewski, J.W., Podhajska, A.J. Gene (1998) [Pubmed]
  19. Site-specific methylases induce the SOS DNA repair response in Escherichia coli. Heitman, J., Model, P. J. Bacteriol. (1987) [Pubmed]
  20. Adenine methylation of Okazaki fragments in Escherichia coli. Marinus, M.G. J. Bacteriol. (1976) [Pubmed]
  21. Analysis of substrate specificity of the PaeR7 endonuclease: effect of base methylation on the kinetics of cleavage. Ghosh, S.S., Obermiller, P.S., Kwoh, T.J., Gingeras, T.R. Nucleic Acids Res. (1990) [Pubmed]
  22. A mutant of BamHI restriction endonuclease which requires N6-methyladenine for cleavage. Whitaker, R.D., Dorner, L.F., Schildkraut, I. J. Mol. Biol. (1999) [Pubmed]
  23. Partial purification of a 6-methyladenine mRNA methyltransferase which modifies internal adenine residues. Tuck, M.T. Biochem. J. (1992) [Pubmed]
  24. A DNA-modification methylase from Bacillus stearothermophilus V. Barra, R., Chiong, M., González, E., Vásquez, C. Biochem. J. (1988) [Pubmed]
  25. An Sau3 AI restriction endonuclease isoschizomer from Bacillus cereus. Cruz, A.K., Kidane, G., Pires, M.Q., Rabinovitch, L., Guaycurus, T.V., Morel, C.M. FEBS Lett. (1984) [Pubmed]
  26. Determination of 6-methyladenine in DNA by high-performance liquid chromatography. Yuki, H., Kawasaki, H., Imayuki, A., Yajima, T. J. Chromatogr. (1979) [Pubmed]
WikiGenes - Universities