The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

TETRAPHENYLBORATE     tetraphenylboron

Synonyms: GNF-Pf-5539, CHEMBL587884, AC1L1RZD, STK331798, AR-1L6548, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

High impact information on tetraphenylboron

 

Biological context of tetraphenylboron

 

Anatomical context of tetraphenylboron

 

Associations of tetraphenylboron with other chemical compounds

 

Gene context of tetraphenylboron

  • A reasonable fit to the data is possible if the dipole potential energy has a magnitude of 5.5 + 0.5 kcal/mol (240 + 20 mV), positive inside, and if the neutral energy contribution for TPP+ and TPB- is -7.0 + 1.0 kcal/mol [18].
  • Tetraphenylboron - a potent activator of kidney mitochondrial glutaminase [19].
  • A 3,5-di-tert-butyl-1,2-semiquinonato (DTBSQ) adduct of Mn(II) was prepared by a reaction between Mn(II)(TPA)Cl(2) (TPA = tris(pyridin-2-ylmethyl)amine) and DTBSQ anion and was isolated as a tetraphenylborate salt [20].
  • It is suggested that TPB- facilitates the entry of DMP+ into the fatty acyl chain regions of the phospholipid bilayer [21].
  • DDT and DDE increases the conductance induced by the hydrophobic ions tetraphenylarsonium (TPhAs+) and tetraphenylborate (TPhB-) in lipid bilayers [22].
 

Analytical, diagnostic and therapeutic context of tetraphenylboron

References

  1. Influence of intramembrane electric charge on Na,K-ATPase. Klodos, I., Fedosova, N.U., Plesner, L. J. Biol. Chem. (1995) [Pubmed]
  2. Tetraphenylboron causes Ca2+ release in isolated sarcoplasmic reticulum and in skinned muscle fibers. Shoshan, V., MacLennan, D.H., Wood, D.S. J. Biol. Chem. (1983) [Pubmed]
  3. Inhibition of [3H]acetylcholine active transport by tetraphenylborate and other anions. Anderson, D.C., King, S.C., Parsons, S.M. Mol. Pharmacol. (1983) [Pubmed]
  4. Enhancement by tetraphenylborate of technetium-99m-MIBI uptake kinetics and accumulation in cultured chick myocardial cells. Piwnica-Worms, D., Kronauge, J.F., Chiu, M.L. J. Nucl. Med. (1991) [Pubmed]
  5. Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate. Andersen, P.S., Fuchs, M. Biophys. J. (1975) [Pubmed]
  6. A copolymerized dodecacarborane anion as covalently attached cation exchanger in ion-selective sensors. Qin, Y., Bakker, E. Anal. Chem. (2003) [Pubmed]
  7. Inhibition of complex I by hydrophobic analogues of N-methyl-4-phenylpyridinium (MPP+) and the use of an ion-selective electrode to measure their accumulation by mitochondria and electron-transport particles. Murphy, M.P., Krueger, M.J., Sablin, S.O., Ramsay, R.R., Singer, T.P. Biochem. J. (1995) [Pubmed]
  8. Vasorelaxation and hyperpolarisation of rat small mesenteric artery by the quaternary anion tetraphenylboron. Favaloro, J.L., McPherson, G.A. Naunyn Schmiedebergs Arch. Pharmacol. (2004) [Pubmed]
  9. Potentiation by the tetraphenylboron anion of the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and its pyridinium metabolite. Heikkila, R.E., Hwang, J., Ofori, S., Geller, H.M., Nicklas, W.J. J. Neurochem. (1990) [Pubmed]
  10. The relation between respiratory inhibition and uptake of 1-methyl-isoquinoline (MIQ+) in mitochondria. Aiuchi, T., Matsunaga, M., Syo, M., Nakaya, K. Neurochem. Int. (1996) [Pubmed]
  11. The effects of tetraphenylboron on spontaneous transmitter release at the frog neuromuscular junction. Marshall, I.G., Parsons, R.L. Br. J. Pharmacol. (1975) [Pubmed]
  12. Characterization of the tetraphenylboron-induced calcium release from skeletal sarcoplasmic reticulum. Soler, F., Fernandez-Belda, F., Gomez-Fernandez, J.C. Eur. J. Biochem. (1989) [Pubmed]
  13. Effects of hydrostatic pressure on lipid bilayer membranes. I. Influence on membrane thickness and activation volumes of lipophilic ion transport. Benz, R., Conti, F. Biophys. J. (1986) [Pubmed]
  14. Hydrophobic ion hydration and the magnitude of the dipole potential. Schamberger, J., Clarke, R.J. Biophys. J. (2002) [Pubmed]
  15. Modification of ion transport in lipid bilayer membranes in the presence of 2,4-dichlorophenoxyacetic acid. II. Suppression of tetraphenylborate conductance and changes of interfacial potentials. Smejtek, P., Paulis-Illangasekare, M. Biophys. J. (1979) [Pubmed]
  16. Structural requirement for the rapid movement of charged molecules across membranes. Experiments with tetraphenylborate analogues. Benz, R. Biophys. J. (1988) [Pubmed]
  17. Effect of the anesthetics benzyl alcohol and chloroform on bilayers made from monolayers. Reyes, J., Latorre, R. Biophys. J. (1979) [Pubmed]
  18. The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Flewelling, R.F., Hubbell, W.L. Biophys. J. (1986) [Pubmed]
  19. Tetraphenylboron - a potent activator of kidney mitochondrial glutaminase. Kovaĉević, Z. FEBS Lett. (1976) [Pubmed]
  20. Aerobic catechol oxidation catalyzed by a bis(mu-oxo)dimanganese(III,III) complex via a manganese(II)-semiquinonate complex. Hitomi, Y., Ando, A., Matsui, H., Ito, T., Tanaka, T., Ogo, S., Funabiki, T. Inorganic chemistry. (2005) [Pubmed]
  21. Mechanism of uptake of the fluorescent dye 2-(4-dimethylaminostyryl)-1-ethylpyridinium cation (DMP+) by phospholipid vesicles. Sedgwick, E.G., Bragg, P.D. Biochim. Biophys. Acta (1993) [Pubmed]
  22. Modification on ion transport in lipid bilayer membranes by the insecticides DDT and DDE. Wolff, D., Bull, R. Biochim. Biophys. Acta (1982) [Pubmed]
  23. Comparison of binding of tetraphenylborate and tetraphenylphosphonium ions to cyclodextrins studied by capillary electrophoresis. Nhujak, T., Goodall, D.M. Electrophoresis (2001) [Pubmed]
  24. Hepatic uptake and biliary excretion of organic cations--II. The influence of ion pair formation. Neef, C., Keulemans, K.T., Meijer, D.K. Biochem. Pharmacol. (1984) [Pubmed]
  25. High-performance liquid chromatography with amperometric determination of plasma tyramine. Causon, R.C., Brown, M.J. J. Chromatogr. (1984) [Pubmed]
  26. Gas chromatographic determination of organomercury following aqueous derivatization with sodium tetraethylborate and sodium tetraphenylborate. Comparative study of gas chromatography coupled with atomic fluorescence spectrometry, atomic emission spectrometry and mass spectrometry. Cai, Y., Monsalud, S., Jaffé, R., Jones, R.D. Journal of chromatography. A. (2000) [Pubmed]
  27. Determination of Cremophor EL in plasma after sample preparation with solid phase extraction and plasma protein precipitation. Meyer, T.H., Böhler, J., Frahm, A.W. Journal of pharmaceutical and biomedical analysis. (2001) [Pubmed]
 
WikiGenes - Universities