The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

hofD  -  leader peptidase

Escherichia coli CFT073

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of hofD

  • These results strongly suggest that highly purified leader peptidase from E. coli and phospholipids are the only components necessary to mediate the binding, processing and insertion of this integral membrane protein [1].
  • We have studied the effect of leader peptidase overproduction on the insertion of newlymade M13 phage coat protein into the plasma membrane of infected cells [2].
  • Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase [3].
  • However, in the temperature-sensitive mutant, the insertion of the Sec-independent Pf3 phage coat protein and the Sec-dependent leader peptidase were not strongly inhibited at the restricted temperatures [4].
  • Procoat, the precursor form of the major coat protein of coliphage M13, assembles into the Escherichia coli inner membrane and is cleaved to mature coat protein by leader peptidase [5].

High impact information on hofD


Chemical compound and disease context of hofD


Biological context of hofD

  • Our data suggest that the first transmembrane and cytoplasmic regions are not directly involved in catalysis, but that the second transmembrane region and the region immediately following it may be in contact with the signal peptide and/or located spatially close to the active site of Lep [16].
  • Our results show that mutations that remove two or more of the positively charged residues within the polar region no longer block membrane assembly of leader peptidase [17].
  • The leader peptidase gene has been subcloned and transferred from this plasmid to the multicopy plasmid pBR322, yielding a new plasmid (pTD101) [2].
  • The minimum substrate sequence recognized by signal peptidase I (SPase I or leader peptidase) was defined by measuring the kinetic parameters for a set of chemically synthesized peptides corresponding to the cleavage site of the precursor maltose binding protein (pro-MBP) [18].
  • Site-directed photocross-linking experiments demonstrate that both YidC and SecY contact nascent Lep very early during biogenesis, at only 50-amino acid nascent chain length [19].

Anatomical context of hofD


Associations of hofD with chemical compounds


Other interactions of hofD


Analytical, diagnostic and therapeutic context of hofD


  1. Membrane assembly from purified components. II. Assembly of M13 procoat into liposomes reconstituted with purified leader peptidase. Watts, C., Silver, P., Wickner, W. Cell (1981) [Pubmed]
  2. Isolation of the Escherichia coli leader peptidase gene and effects of leader peptidase overproduction in vivo. Date, T., Wickner, W. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  3. Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. Nunn, D.N., Lory, S. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  4. Conditional lethal mutations separate the M13 procoat and Pf3 coat functions of YidC: different YIDC structural requirements for membrane protein insertion. Chen, M., Xie, K., Nouwen, N., Driessen, A.J., Dalbey, R.E. J. Biol. Chem. (2003) [Pubmed]
  5. M13 procoat inserts into liposomes in the absence of other membrane proteins. Geller, B.L., Wickner, W. J. Biol. Chem. (1985) [Pubmed]
  6. Bacterial leader peptidase, a membrane protein without a leader peptide, uses the same export pathway as pre-secretory proteins. Wolfe, P.B., Wickner, W. Cell (1984) [Pubmed]
  7. Membrane assembly from purified components. I. Isolated M13 procoat does not require ribosomes or soluble proteins for processing by membranes. Silver, P., Watts, C., Wickner, W. Cell (1981) [Pubmed]
  8. Leader peptidase of Escherichia coli: critical role of a small domain in membrane assembly. Dalbey, R.E., Wickner, W. Science (1987) [Pubmed]
  9. Processing of TCP pilin by TcpJ typifies a common step intrinsic to a newly recognized pathway of extracellular protein secretion by gram-negative bacteria. Kaufman, M.R., Seyer, J.M., Taylor, R.K. Genes Dev. (1991) [Pubmed]
  10. Inner membrane protease I, an enzyme mediating intramitochondrial protein sorting in yeast. Schneider, A., Behrens, M., Scherer, P., Pratje, E., Michaelis, G., Schatz, G. EMBO J. (1991) [Pubmed]
  11. A serine and a lysine residue implicated in the catalytic mechanism of the Escherichia coli leader peptidase. Tschantz, W.R., Sung, M., Delgado-Partin, V.M., Dalbey, R.E. J. Biol. Chem. (1993) [Pubmed]
  12. Use of site-directed chemical modification to study an essential lysine in Escherichia coli leader peptidase. Paetzel, M., Strynadka, N.C., Tschantz, W.R., Casareno, R., Bullinger, P.R., Dalbey, R.E. J. Biol. Chem. (1997) [Pubmed]
  13. Identification of potential active-site residues in the Escherichia coli leader peptidase. Sung, M., Dalbey, R.E. J. Biol. Chem. (1992) [Pubmed]
  14. Synthesis of precursor maltose-binding protein with proline in the +1 position of the cleavage site interferes with the activity of Escherichia coli signal peptidase I in vivo. Barkocy-Gallagher, G.A., Bassford, P.J. J. Biol. Chem. (1992) [Pubmed]
  15. Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. Dalbey, R.E., Wickner, W. J. Biol. Chem. (1985) [Pubmed]
  16. Mapping of catalytically important domains in Escherichia coli leader peptidase. Bilgin, N., Lee, J.I., Zhu, H.Y., Dalbey, R., von Heijne, G. EMBO J. (1990) [Pubmed]
  17. Positive charges in the cytoplasmic domain of Escherichia coli leader peptidase prevent an apolar domain from functioning as a signal. Laws, J.K., Dalbey, R.E. EMBO J. (1989) [Pubmed]
  18. Minimum substrate sequence for signal peptidase I of Escherichia coli. Dev, I.K., Ray, P.H., Novak, P. J. Biol. Chem. (1990) [Pubmed]
  19. YidC and SecY mediate membrane insertion of a Type I transmembrane domain. Houben, E.N., Urbanus, M.L., Van Der Laan, M., Ten Hagen-Jongman, C.M., Driessen, A.J., Brunner, J., Oudega, B., Luirink, J. J. Biol. Chem. (2002) [Pubmed]
  20. The reaction specificities of the thylakoidal processing peptidase and Escherichia coli leader peptidase are identical. Halpin, C., Elderfield, P.D., James, H.E., Zimmermann, R., Dunbar, B., Robinson, C. EMBO J. (1989) [Pubmed]
  21. Chemical synthesis and enzymic processing of precursor forms of cecropins A and B. Boman, H.C., Boman, I.A., Andreu, D., Li, Z.Q., Merrifield, R.B., Schlenstedt, G., Zimmermann, R. J. Biol. Chem. (1989) [Pubmed]
  22. Membrane topology of Alzheimer's disease-related presenilin 1. Evidence for the existence of a molecular species with a seven membrane-spanning and one membrane-embedded structure. Nakai, T., Yamasaki, A., Sakaguchi, M., Kosaka, K., Mihara, K., Amaya, Y., Miura, S. J. Biol. Chem. (1999) [Pubmed]
  23. In vitro membrane integration of leader peptidase depends on the Sec machinery and anionic phospholipids and can occur post-translationally. van Klompenburg, W., Ridder, A.N., van Raalte, A.L., Killian, A.J., von Heijne, G., de Kruijff, B. FEBS Lett. (1997) [Pubmed]
  24. Use of phoA fusions to study the topology of the Escherichia coli inner membrane protein leader peptidase. San Millan, J.L., Boyd, D., Dalbey, R., Wickner, W., Beckwith, J. J. Bacteriol. (1989) [Pubmed]
  25. Crystallization of a soluble, catalytically active form of Escherichia coli leader peptidase. Paetzel, M., Chernaia, M., Strynadka, N., Tschantz, W., Cao, G., Dalbey, R.E., James, M.N. Proteins (1995) [Pubmed]
  26. Demonstration by a novel genetic technique that leader peptidase is an essential enzyme of Escherichia coli. Date, T. J. Bacteriol. (1983) [Pubmed]
  27. Evidence that the catalytic activity of prokaryote leader peptidase depends upon the operation of a serine-lysine catalytic dyad. Black, M.T. J. Bacteriol. (1993) [Pubmed]
  28. Development of an internally quenched fluorescent substrate for Escherichia coli leader peptidase. Zhong, W., Benkovic, S.J. Anal. Biochem. (1998) [Pubmed]
WikiGenes - Universities