The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

KST-1A5529     (2S,3R)-2,3,4,5- tetrahydroxypentanal

Synonyms: AR-1A6159, AC1L1S2M, AC1Q6A5O, (4xi)-d-threo-pentose
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of arabinose

 

High impact information on arabinose

  • The others (maltose-binding protein, arabinose-binding protein, omp A protein, lam B protein and alkaline phosphatase) showed both modes of processing, although the amount of cotranslational processing varied considerably among the individual proteins of this class [6].
  • A specific increase in S7 synthesis caused by stimulation in transcription originating from the arabinose promoter decreased the synthetic rate for EF-G but had no effect on S12 or EF-Tu synthesis [7].
  • EMB inhibits the polymerization of cell wall arabinan, and results in the accumulation of the lipid carrier decaprenol phosphoarabinose, which suggests that the drug interferes with the transfer of arabinose to the cell wall acceptor [8].
  • Here we address this issue directly by construction of a strain in which ffh expression is arabinose-dependent [9].
  • The addition of arabinose, which induces the operon, breaks the loop, and shifts the interactions from the distal araO2 site to the previously unoccupied half of the araI site [1].
 

Chemical compound and disease context of arabinose

 

Biological context of arabinose

  • The differing abilities of ribose, 2'-deoxyribose, and arabinose nucleotides to base-pair within an RNA.RNA duplex and to contribute a nucleophilic 2'-OH group were exploited to analyze the paired/unpaired disposition of the branch site nucleotide [15].
  • The dimeric AraC protein of Escherichia coli binds specifically to DNA sequences upstream of promoters whose transcription is regulated by arabinose [16].
  • Gene expression from plasmids containing the araBAD promoter can be regulated by the concentration of arabinose in the growth medium [17].
  • One provides a dimerization capability and binds the ligand arabinose, and the other provides a site-specific DNA-binding capability and activates transcription [18].
  • First, dimethyl sulfate methylation protection measurements on normally growing cells show that the AraC regulatory protein occupies the araI site in the presence and absence of the inducer arabinose [19].
 

Anatomical context of arabinose

 

Associations of arabinose with other chemical compounds

 

Gene context of arabinose

  • Excision events that produce an in-frame fusion of lacZ to araB result in a cell (here designated Ara-Lac+) that can grow on lactose if arabinose is present as an inducer [30].
  • The cloning, DNA sequence, and overexpression of the gene araE coding for arabinose-proton symport in Escherichia coli K12 [31].
  • In this study, we examined whether overexpression of TLR2 or TLR4 would affect the ability of cells to become tolerant to LPS or the mycobacterial components, arabinose-capped lipoarabinomannan (LAM) and soluble tuberculosis factor (STF) [32].
  • However, when expression of the cloned misL gene was driven by the Escherichia coli arabinose promoter, MisL could be detected in the S [33].
  • Mutant RNase P RNA alleles (rnpBC292 and rnpBC293) caused severe growth defects in the E. coli rnpB mutant strain DW2 and abolished growth in the newly constructed mutant strain BW, in which chromosomal rnpB expression strictly depended on the presence of arabinose [34].
 

Analytical, diagnostic and therapeutic context of arabinose

References

  1. DNA looping and unlooping by AraC protein. Lobell, R.B., Schleif, R.F. Science (1990) [Pubmed]
  2. TnAraOut, a transposon-based approach to identify and characterize essential bacterial genes. Judson, N., Mekalanos, J.J. Nat. Biotechnol. (2000) [Pubmed]
  3. A plasmid-encoded regulatory gene, rns, required for expression of the CS1 and CS2 adhesins of enterotoxigenic Escherichia coli. Caron, J., Coffield, L.M., Scott, J.R. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  4. Role of veins and cerebral venous pressure in disruption of the blood-brain barrier. Mayhan, W.G., Heistad, D.D. Circ. Res. (1986) [Pubmed]
  5. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. Wolucka, B.A., McNeil, M.R., de Hoffmann, E., Chojnacki, T., Brennan, P.J. J. Biol. Chem. (1994) [Pubmed]
  6. Different exported proteins in E. coli show differences in the temporal mode of processing in vivo. Josefsson, L.G., Randall, L.L. Cell (1981) [Pubmed]
  7. Identification of ribosomal protein S7 as a repressor of translation within the str operon of E. coli. Dean, D., Yates, J.L., Nomura, M. Cell (1981) [Pubmed]
  8. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Telenti, A., Philipp, W.J., Sreevatsan, S., Bernasconi, C., Stockbauer, K.E., Wieles, B., Musser, J.M., Jacobs, W.R. Nat. Med. (1997) [Pubmed]
  9. The E. coli ffh gene is necessary for viability and efficient protein export. Phillips, G.J., Silhavy, T.J. Nature (1992) [Pubmed]
  10. Precursors of three exported proteins in Escherichia coli. Randall, L.L., Hardy, S.J., Josefsson, L.G. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  11. Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis. Alderwick, L.J., Seidel, M., Sahm, H., Besra, G.S., Eggeling, L. J. Biol. Chem. (2006) [Pubmed]
  12. The x-ray structure of the periplasmic galactose binding protein from Salmonella typhimurium at 3.0-A resolution. Mowbray, S.L., Petsko, G.A. J. Biol. Chem. (1983) [Pubmed]
  13. Signal-regulator interactions. Genetic analysis of the effector binding site of xylS, the benzoate-activated positive regulator of Pseudomonas TOL plasmid meta-cleavage pathway operon. Ramos, J.L., Michan, C., Rojo, F., Dwyer, D., Timmis, K. J. Mol. Biol. (1990) [Pubmed]
  14. Xylose, arabinose, and rhamnose fermentation by Bacteroides ruminicola. Turner, K.W., Roberton, A.M. Appl. Environ. Microbiol. (1979) [Pubmed]
  15. Branch nucleophile selection in pre-mRNA splicing: evidence for the bulged duplex model. Query, C.C., Moore, M.J., Sharp, P.A. Genes Dev. (1994) [Pubmed]
  16. Variation of half-site organization and DNA looping by AraC protein. Carra, J.H., Schleif, R.F. EMBO J. (1993) [Pubmed]
  17. Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Siegele, D.A., Hu, J.C. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  18. Functional domains of the AraC protein. Bustos, S.A., Schleif, R.F. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  19. The DNA loop model for ara repression: AraC protein occupies the proposed loop sites in vivo and repression-negative mutations lie in these same sites. Martin, K., Huo, L., Schleif, R.F. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  20. Modification of the blood-brain barrier: increased concentration and fate of enzymes entering the brain. Barranger, J.A., Rapoport, S.I., Fredericks, W.R., Pentchev, P.G., MacDermot, K.D., Steusing, J.K., Brady, R.O. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  21. [3H]Methotrexate loss from the rat brain following enhanced uptake by osmotic opening of the blood-brain barrier. Ohata, M., Fredericks, W.R., Neuwelt, E.A., Sundaram, U., Rapoport, S.I. Cancer Res. (1985) [Pubmed]
  22. Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Bowman, P.D., Ennis, S.R., Rarey, K.E., Betz, A.L., Goldstein, G.W. Ann. Neurol. (1983) [Pubmed]
  23. Arabinoxylan biosynthesis in wheat. Characterization of arabinosyltransferase activity in Golgi membranes. Porchia, A.C., Sørensen, S.O., Scheller, H.V. Plant Physiol. (2002) [Pubmed]
  24. Role of cell walls in the bioaccessibility of lipids in almond seeds. Ellis, P.R., Kendall, C.W., Ren, Y., Parker, C., Pacy, J.F., Waldron, K.W., Jenkins, D.J. Am. J. Clin. Nutr. (2004) [Pubmed]
  25. Two novel types of O-glycans on the mugwort pollen allergen Art v 1 and their role in antibody binding. Leonard, R., Petersen, B.O., Himly, M., Kaar, W., Wopfner, N., Kolarich, D., van Ree, R., Ebner, C., Duus, J.Ø., Ferreira, F., Altmann, F. J. Biol. Chem. (2005) [Pubmed]
  26. Characterization of GDP-alpha-D-arabinopyranose, the precursor of D-Arap in Leishmania major lipophosphoglycan. Schneider, P., McConville, M.J., Ferguson, M.A. J. Biol. Chem. (1994) [Pubmed]
  27. Metabolic engineering applications to renewable resource utilization. Aristidou, A., Penttilä, M. Curr. Opin. Biotechnol. (2000) [Pubmed]
  28. From famine to feast: the role of methylglyoxal production in Escherichia coli. Tötemeyer, S., Booth, N.A., Nichols, W.W., Dunbar, B., Booth, I.R. Mol. Microbiol. (1998) [Pubmed]
  29. Apoptosis is induced in post-mitotic rat sympathetic neurons by arabinosides and topoisomerase II inhibitors in the presence of NGF. Tomkins, C.E., Edwards, S.N., Tolkovsky, A.M. J. Cell. Sci. (1994) [Pubmed]
  30. The occurrence of heritable Mu excisions in starving cells of Escherichia coli. Foster, P.L., Cairns, J. EMBO J. (1994) [Pubmed]
  31. The cloning, DNA sequence, and overexpression of the gene araE coding for arabinose-proton symport in Escherichia coli K12. Maiden, M.C., Jones-Mortimer, M.C., Henderson, P.J. J. Biol. Chem. (1988) [Pubmed]
  32. Induction of tolerance to lipopolysaccharide and mycobacterial components in Chinese hamster ovary/CD14 cells is not affected by overexpression of Toll-like receptors 2 or 4. Medvedev, A.E., Henneke, P., Schromm, A., Lien, E., Ingalls, R., Fenton, M.J., Golenbock, D.T., Vogel, S.N. J. Immunol. (2001) [Pubmed]
  33. Salmonella enterica serotype Typhimurium MisL is an intestinal colonization factor that binds fibronectin. Dorsey, C.W., Laarakker, M.C., Humphries, A.D., Weening, E.H., Bäumler, A.J. Mol. Microbiol. (2005) [Pubmed]
  34. The precursor tRNA 3'-CCA interaction with Escherichia coli RNase P RNA is essential for catalysis by RNase P in vivo. Wegscheid, B., Hartmann, R.K. RNA (2006) [Pubmed]
  35. Contribution of gene loss to the pathogenic evolution of Burkholderia pseudomallei and Burkholderia mallei. Moore, R.A., Reckseidler-Zenteno, S., Kim, H., Nierman, W., Yu, Y., Tuanyok, A., Warawa, J., DeShazer, D., Woods, D.E. Infect. Immun. (2004) [Pubmed]
  36. Pseudomonas cellulosa expresses a single membrane-bound glycoside hydrolase family 51 arabinofuranosidase. Beylot, M.H., Emami, K., McKie, V.A., Gilbert, H.J., Pell, G. Biochem. J. (2001) [Pubmed]
  37. Characterization of the oligomeric states of wild type and mutant AraC. LaRonde-LeBlanc, N., Wolberger, C. Biochemistry (2000) [Pubmed]
  38. Effects of hypophysectomy and cell isolation on the transport of L-arabinose by adipocytes. Coiro, V., Grichting, G., Kominz, D., Goodman, H.M. Endocrinology (1985) [Pubmed]
  39. Acid shock induction of RpoS is mediated by the mouse virulence gene mviA of Salmonella typhimurium. Bearson, S.M., Benjamin, W.H., Swords, W.E., Foster, J.W. J. Bacteriol. (1996) [Pubmed]
 
WikiGenes - Universities