The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Immunodeficiency Virus, Feline

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Immunodeficiency Virus, Feline


High impact information on Immunodeficiency Virus, Feline

  • Although long terminal repeat (LTR)-directed FIV expression was found to be negligible in human cells, promoter substitution enabled an env-deleted, three-plasmid, human cell-FIV lentiviral vector system to express high levels of FIV proteins and FIV vectors in human cells, thus bypassing the hazards of feline vector producer cells [5].
  • Here, we demonstrate that the 43-kDa molecule is CD134, a receptor for FIV recently identified independently [Shimojima, M., et al. (2004) Science 303, 1192-1195] [6].
  • The major surface glycoprotein of feline immunodeficiency virus (FIV) specifically binds to a 43-kDa glycoprotein expressed on the surface of a subset of T cells in peripheral blood mononuclear cells and IL-2-dependent T cell lines [6].
  • Altogether, our results substantiate that CD134 acts as a primary binding receptor for FIV and explain the specific targeting and depletion of the CD4+ T cell population observed during the course of infection independent of the use of CD4 as a binding receptor/coreceptor [6].
  • Effects of feline immunodeficiency virus on astrocyte glutamate uptake: implications for lentivirus-induced central nervous system diseases [7].

Chemical compound and disease context of Immunodeficiency Virus, Feline


Biological context of Immunodeficiency Virus, Feline

  • We generated a GP64-pseudotyped FIV vector encoding the B domain-deleted human FVIII coding region driven by the liver-specific promoter, with 2 beneficial point mutations in the A1 domain [3].
  • The development of an antibody response to FIV gag-encoded proteins and detection of virus-specific sequences in sera, blood-derived cells, and necropsied tissue accompanied these changes [13].
  • OBJECTIVE: To evaluate the efficacy of a genetic vaccination protocol based on minimalistic, immunogenic defined gene expression (MIDGE) vectors coding for domains of the feline immunodeficiency virus (FIV) env gene and feline IL-12 [14].
  • CONCLUSION: Genetic vaccination using a MIDGE-based construct for the expression of the surface-transmembrane protein domain of FIV env and feline IL-12 DNA led to protection against homologous virus challenge in three out of four vaccinated cats [14].
  • DNA extracted from TNF-alpha-treated CRFK cells infected with FIV showed a ladder of nucleosomal DNA, indicating that this cytocidal effect by TNF-alpha was due to programmed cell death, or apoptosis [15].

Anatomical context of Immunodeficiency Virus, Feline


Gene context of Immunodeficiency Virus, Feline

  • The data suggest that infection of feline cells with FIV can be mediated by CXCR4 and that, depending on the assay conditions, infection can be either inhibited or enhanced by SDF-1alpha [21].
  • These findings provide direct evidence for a sequential interaction of FIV Env with CD134 and CXCR4 and reveal the presence of a cryptic epitope in V3 that is masked in the mature envelope oligomers [22].
  • Antibodies binding the CCR3 chemokine receptor maximally inhibited infection of human PBMC by both FIV strains compared to antibodies to CXCR4 or CCR5 [23].
  • The feline CXCR4 has been shown to facilitate fusion by FIV [44] and we suggest that the feline CCR5 receptor mediates infection of feline cells by M-tropic strains of FIV [24].
  • These results suggest that the inhibitory effect of IL-12 on both virus replication and apoptosis has potential implications for the design of immunotherapy strategies using IL-12 in FIV infection [25].

Analytical, diagnostic and therapeutic context of Immunodeficiency Virus, Feline


  1. Analysis of the S3 and S3' subsite specificities of feline immunodeficiency virus (FIV) protease: development of a broad-based protease inhibitor efficacious against FIV, SIV, and HIV in vitro and ex vivo. Lee, T., Laco, G.S., Torbett, B.E., Fox, H.S., Lerner, D.L., Elder, J.H., Wong, C.H. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  2. Molecular cloning of feline immunodeficiency virus. Olmsted, R.A., Barnes, A.K., Yamamoto, J.K., Hirsch, V.M., Purcell, R.H., Johnson, P.R. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  3. Persistent expression of factor VIII in vivo following nonprimate lentiviral gene transfer. Kang, Y., Xie, L., Tran, D.T., Stein, C.S., Hickey, M., Davidson, B.L., McCray, P.B. Blood (2005) [Pubmed]
  4. The interaction of LEDGF/p75 with integrase is lentivirus-specific and promotes DNA binding. Busschots, K., Vercammen, J., Emiliani, S., Benarous, R., Engelborghs, Y., Christ, F., Debyser, Z. J. Biol. Chem. (2005) [Pubmed]
  5. Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Poeschla, E.M., Wong-Staal, F., Looney, D.J. Nat. Med. (1998) [Pubmed]
  6. Feline immunodeficiency virus targets activated CD4+ T cells by using CD134 as a binding receptor. de Parseval, A., Chatterji, U., Sun, P., Elder, J.H. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  7. Effects of feline immunodeficiency virus on astrocyte glutamate uptake: implications for lentivirus-induced central nervous system diseases. Yu, N., Billaud, J.N., Phillips, T.R. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  8. A novel CRM1-mediated nuclear export signal governs nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase following genotoxic stress. Brown, V.M., Krynetski, E.Y., Krynetskaia, N.F., Grieger, D., Mukatira, S.T., Murti, K.G., Slaughter, C.A., Park, H.W., Evans, W.E. J. Biol. Chem. (2004) [Pubmed]
  9. Isolation and characterization of a high molecular weight stable pink form of uteroferrin from uterine secretions and allantoic fluid of pigs. Baumbach, G.A., Ketcham, C.M., Richardson, D.E., Bazer, F.W., Roberts, R.M. J. Biol. Chem. (1986) [Pubmed]
  10. 9-(2-Phosphonylmethoxyethyl)adenine (PMEA) effectively inhibits retrovirus replication in vitro and simian immunodeficiency virus infection in rhesus monkeys. Balzarini, J., Naesens, L., Slachmuylders, J., Niphuis, H., Rosenberg, I., Holý, A., Schellekens, H., De Clercq, E. AIDS (1991) [Pubmed]
  11. The cat/feline immunodeficiency virus model for transmucosal transmission of AIDS: nonoxynol-9 contraceptive jelly blocks transmission by an infected cell inoculum. Moench, T.R., Whaley, K.J., Mandrell, T.D., Bishop, B.D., Witt, C.J., Cone, R.A. AIDS (1993) [Pubmed]
  12. Selection against CpG dinucleotides in lentiviral genes: a possible role of methylation in regulation of viral expression. Shpaer, E.G., Mullins, J.I. Nucleic Acids Res. (1990) [Pubmed]
  13. Xenoinfection of nonhuman primates by feline immunodeficiency virus. Johnston, J.B., Olson, M.E., Rud, E.W., Power, C. Curr. Biol. (2001) [Pubmed]
  14. Protection against FIV challenge infection by genetic vaccination using minimalistic DNA constructs for FIV env gene and feline IL-12 expression. Boretti, F.S., Leutenegger, C.M., Mislin, C., Hofmann-Lehmann, R., König, S., Schroff, M., Junghans, C., Fehr, D., Huettner, S.W., Habel, A., Flynn, J.N., Aubert, A., Pedersen, N.C., Wittig, B., Lutz, H. AIDS (2000) [Pubmed]
  15. Apoptosis induced by tumor necrosis factor in cells chronically infected with feline immunodeficiency virus. Ohno, K., Nakano, T., Matsumoto, Y., Watari, T., Goitsuka, R., Nakayama, H., Tsujimoto, H., Hasegawa, A. J. Virol. (1993) [Pubmed]
  16. Evidence of feline immunodeficiency virus replication in cultured Kupffer cells. Martin, J.P., Bingen, A., Braunwald, J., Nonnenmacher, H., Valle, M., Gut, J.P., Koehren, F., de Monte, M., Kirn, A. AIDS (1995) [Pubmed]
  17. Aberrant cortical neurogenesis in a pediatric neuroAIDS model: neurotrophic effects of growth hormone. van Marle, G., Antony, J.M., Silva, C., Sullivan, A., Power, C. AIDS (2005) [Pubmed]
  18. Processing of the glycoprotein of feline immunodeficiency virus: effect of inhibitors of glycosylation. Stephens, E.B., Monck, E., Reppas, K., Butfiloski, E.J. J. Virol. (1991) [Pubmed]
  19. A longitudinal study of feline immunodeficiency virus-specific cytotoxic T lymphocytes in experimentally infected cats, using antigen-specific induction. Beatty, J.A., Willett, B.J., Gault, E.A., Jarrett, O. J. Virol. (1996) [Pubmed]
  20. Identification of a linear neutralization site within the third variable region of the feline immunodeficiency virus envelope. Lombardi, S., Garzelli, C., La Rosa, C., Zaccaro, L., Specter, S., Malvaldi, G., Tozzini, F., Esposito, F., Bendinelli, M. J. Virol. (1993) [Pubmed]
  21. Modulation of feline immunodeficiency virus infection by stromal cell-derived factor. Hosie, M.J., Broere, N., Hesselgesser, J., Turner, J.D., Hoxie, J.A., Neil, J.C., Willett, B.J. J. Virol. (1998) [Pubmed]
  22. Sequential CD134-CXCR4 interactions in feline immunodeficiency virus (FIV): soluble CD134 activates FIV Env for CXCR4-dependent entry and reveals a cryptic neutralization epitope. de Parseval, A., Grant, C.K., Sastry, K.J., Elder, J.H. J. Virol. (2006) [Pubmed]
  23. Productive infection of human peripheral blood mononuclear cells by feline immunodeficiency virus: implications for vector development. Johnston, J., Power, C. J. Virol. (1999) [Pubmed]
  24. Feline peripheral blood mononuclear cells express message for both CXC and CC type chemokine receptors. Kovacs, E.M., Baxter, G.D., Robinson, W.F. Arch. Virol. (1999) [Pubmed]
  25. Effect of interleukin-12 and interleukin-10 on the virus replication and apoptosis in T-cells infected with feline immunodeficiency virus. Mortola, E., Endo, Y., Mizuno, T., Ohno, K., Watari, T., Tsujimoto, H., Hasegawa, A. J. Vet. Med. Sci. (1998) [Pubmed]
  26. AIDS vaccination studies using an ex vivo feline immunodeficiency virus model: detailed analysis of the humoral immune response to a protective vaccine. Mazzetti, P., Giannecchini, S., Del Mauro, D., Matteucci, D., Portincasa, P., Merico, A., Chezzi, C., Bendinelli, M. J. Virol. (1999) [Pubmed]
  27. Activities of the feline immunodeficiency virus integrase protein produced in Escherichia coli. Vink, C., van der Linden, K.H., Plasterk, R.H. J. Virol. (1994) [Pubmed]
  28. In vivo lymphocyte tropism of feline immunodeficiency virus. English, R.V., Johnson, C.M., Gebhard, D.H., Tompkins, M.B. J. Virol. (1993) [Pubmed]
  29. Epitope mapping of the V3 domain of feline immunodeficiency virus envelope glycoprotein by monoclonal antibodies. Lombardi, S., Massi, C., Tozzini, F., Zaccaro, L., Bazzichi, A., Bandecchi, P., La Rosa, C., Bendinelli, M., Garzelli, C. J. Gen. Virol. (1995) [Pubmed]
WikiGenes - Universities