The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Vamp2  -  vesicle-associated membrane protein 2

Rattus norvegicus

Synonyms: RATVAMPB, RATVAMPIR, SYB, Syb2, Synaptobrevin-2, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Vamp2


High impact information on Vamp2

  • Recently tetanus toxin was shown to proteolytically degrade synaptobrevin II (also named VAMP-2), a synaptic vesicle-specific protein, in vitro and in nerve terminals [5].
  • Here we show that one element of this recognition process is the v-SNARE, VAMP-2, because tetanus toxin, which cleaves VAMP-2, inhibited the formation of synaptic vesicles and their coating with AP3 in vitro [6].
  • AP3-containing complexes isolated from coated vesicles could be immunoprecipitated by a VAMP-2 antibody [6].
  • Using both live cell imaging of endogenous synaptotagmin Ia (sytIa) as well as pHluorin-tagged sytIa and VAMP-2, we show here that synaptic vesicle proteins interchange with a large pool on the cell axonal surface whose concentration is approximately 10-fold lower than that in SVs [7].
  • A mutation in the cytoplasmic domain of VAMP2 that inhibits endocytosis abolished its axonal polarization [8].

Chemical compound and disease context of Vamp2

  • Here, we show that botulinum toxin type G cleaves rat synaptobrevin 2 between Ala81 and Ala82, a peptide bond that differs from those attacked by tetanus toxin and the botulinal toxins types B, D, and F. Synaptobrevin isoforms carrying a Gly in the P1 position are poor substrates [9].

Biological context of Vamp2


Anatomical context of Vamp2


Associations of Vamp2 with chemical compounds


Physical interactions of Vamp2


Co-localisations of Vamp2

  • These data demonstrate the functional significance of SNAP-25 as a SNARE protein in the parietal cell and show the dynamic stimulation-associated redistribution of VAMP-2 from H,K-ATPase-rich tubulovesicles to co-localize with SNAP-25 on the apical plasma membrane [23].
  • In L6 skeletal myoblasts, which display insulin-dependent traffic of GLUT4, we show that VAP-33 colocalized significantly with VAMP-2 using indirect confocal immunofluorescence and biochemical cosegregation [24].

Other interactions of Vamp2


Analytical, diagnostic and therapeutic context of Vamp2

  • Immunoblotting revealed specific labeling of VAMP2 (18-kD band) but not VAMP1 in membrane fractions prepared from kidney inner medulla [1].
  • VAMP2 immunolabeling colocalized with AQP2 labeling in intracellular vesicles, as determined by immunoelectron microscopy after double immunolabeling of isolated vesicles [1].
  • We studied VAMP-2 and -3 expression and localization in isolated perfused TALs by confocal microscopy and found that both of them were located in the subapical space of the TAL [28].
  • Immunohistochemical analysis did not reveal any detectable changes in VAMP-1- or VAMP-2-like immunoreactivity in the motoneurone cell soma after axotomy [29].
  • Salt-loading (2% NaCl as drinking water), an animal model which increases the expression and secretion of hormones from hypothalamic magnocellular neurons, resulted in significantly increased mRNA levels for VAMP-2 (36%, 28%), munc-18 (74%, 68%) and SNAP-25a (59%, 77%) in the PVN and SON, respectively [26].


  1. Expression of VAMP-2-like protein in kidney collecting duct intracellular vesicles. Colocalization with Aquaporin-2 water channels. Nielsen, S., Marples, D., Birn, H., Mohtashami, M., Dalby, N.O., Trimble, M., Knepper, M. J. Clin. Invest. (1995) [Pubmed]
  2. SNAP-25 and syntaxin, but not synaptobrevin 2, cooperate in the regulated release of nerve growth factor. Blöchl, A. Neuroreport (1998) [Pubmed]
  3. Novel method for the labeling of distant neuromuscular junctions. Jacob, J.M., Zhou, Q., Liu, Y. J. Neurosci. Res. (2000) [Pubmed]
  4. Tremor and zitter, causative mutant genes for epilepsy with spongiform encephalopathy in spontaneously epileptic rat (SER), are tightly linked to synaptobrevin-2 and prion protein genes, respectively. Kuramoto, T., Mori, M., Yamada, J., Serikawa, T. Biochem. Biophys. Res. Commun. (1994) [Pubmed]
  5. Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. McMahon, H.T., Ushkaryov, Y.A., Edelmann, L., Link, E., Binz, T., Niemann, H., Jahn, R., Südhof, T.C. Nature (1993) [Pubmed]
  6. A v-SNARE participates in synaptic vesicle formation mediated by the AP3 adaptor complex. Salem, N., Faúndez, V., Horng, J.T., Kelly, R.B. Nat. Neurosci. (1998) [Pubmed]
  7. Synaptic vesicles interchange their membrane proteins with a large surface reservoir during recycling. Fernández-Alfonso, T., Kwan, R., Ryan, T.A. Neuron (2006) [Pubmed]
  8. Two distinct mechanisms target membrane proteins to the axonal surface. Sampo, B., Kaech, S., Kunz, S., Banker, G. Neuron (2003) [Pubmed]
  9. Botulinum neurotoxin type G proteolyses the Ala81-Ala82 bond of rat synaptobrevin 2. Yamasaki, S., Binz, T., Hayashi, T., Szabo, E., Yamasaki, N., Eklund, M., Jahn, R., Niemann, H. Biochem. Biophys. Res. Commun. (1994) [Pubmed]
  10. Two vesicle-associated membrane protein genes are differentially expressed in the rat central nervous system. Elferink, L.A., Trimble, W.S., Scheller, R.H. J. Biol. Chem. (1989) [Pubmed]
  11. The vesicle-associated membrane protein family of proteins in rat pancreatic and parotid acinar cells. Gaisano, H.Y., Sheu, L., Grondin, G., Ghai, M., Bouquillon, A., Lowe, A., Beaudoin, A., Trimble, W.S. Gastroenterology (1996) [Pubmed]
  12. v- and t-SNARE protein expression in models of insulin resistance: normalization of glycemia by rosiglitazone treatment corrects overexpression of cellubrevin, vesicle-associated membrane protein-2, and syntaxin 4 in skeletal muscle of Zucker diabetic fatty rats. Maier, V.H., Melvin, D.R., Lister, C.A., Chapman, H., Gould, G.W., Murphy, G.J. Diabetes (2000) [Pubmed]
  13. Characterization of an alternatively spliced isoform of rat vesicle associated membrane protein-2 (VAMP-2). Mandic, R., Lowe, A.W. FEBS Lett. (1999) [Pubmed]
  14. nSec1 binds a closed conformation of syntaxin1A. Yang, B., Steegmaier, M., Gonzalez, L.C., Scheller, R.H. J. Cell Biol. (2000) [Pubmed]
  15. Synaptophysin I controls the targeting of VAMP2/synaptobrevin II to synaptic vesicles. Pennuto, M., Bonanomi, D., Benfenati, F., Valtorta, F. Mol. Biol. Cell (2003) [Pubmed]
  16. Synaptobrevin 2 is palmitoylated in synaptic vesicles prepared from adult, but not from embryonic brain. Veit, M., Becher, A., Ahnert-Hilger, G. Mol. Cell. Neurosci. (2000) [Pubmed]
  17. Chronic blockade of glutamate receptors enhances presynaptic release and downregulates the interaction between synaptophysin-synaptobrevin-vesicle-associated membrane protein 2. Bacci, A., Coco, S., Pravettoni, E., Schenk, U., Armano, S., Frassoni, C., Verderio, C., De Camilli, P., Matteoli, M. J. Neurosci. (2001) [Pubmed]
  18. VAMP-2 and cellubrevin are expressed in pancreatic beta-cells and are essential for Ca(2+)-but not for GTP gamma S-induced insulin secretion. Regazzi, R., Wollheim, C.B., Lang, J., Theler, J.M., Rossetto, O., Montecucco, C., Sadoul, K., Weller, U., Palmer, M., Thorens, B. EMBO J. (1995) [Pubmed]
  19. Vesicle-associated membrane protein-2 (synaptobrevin-2) forms a complex with synaptophysin. Washbourne, P., Schiavo, G., Montecucco, C. Biochem. J. (1995) [Pubmed]
  20. Differential expression of VAMP2/synaptobrevin-2 after antidepressant and electroconvulsive treatment in rat frontal cortex. Yamada, M., Takahashi, K., Tsunoda, M., Nishioka, G., Kudo, K., Ohata, H., Kamijima, K., Higuchi, T., Momose, K., Yamada, M. Pharmacogenomics J. (2002) [Pubmed]
  21. Crystal structure and biophysical properties of a complex between the N-terminal SNARE region of SNAP25 and syntaxin 1a. Misura, K.M., Gonzalez, L.C., May, A.P., Scheller, R.H., Weis, W.I. J. Biol. Chem. (2001) [Pubmed]
  22. Calmodulin-dependent regulation of a lipid binding domain in the v-SNARE synaptobrevin and its role in vesicular fusion. De Haro, L., Quetglas, S., Iborra, C., Lévêque, C., Seagar, M. Biol. Cell (2003) [Pubmed]
  23. Localization and function of soluble N-ethylmaleimide-sensitive factor attachment protein-25 and vesicle-associated membrane protein-2 in functioning gastric parietal cells. Karvar, S., Yao, X., Crothers, J.M., Liu, Y., Forte, J.G. J. Biol. Chem. (2002) [Pubmed]
  24. A functional role for VAP-33 in insulin-stimulated GLUT4 traffic. Foster, L.J., Weir, M.L., Lim, D.Y., Liu, Z., Trimble, W.S., Klip, A. Traffic (2000) [Pubmed]
  25. Expression of vesicle-associated membrane protein 2 (VAMP-2)/synaptobrevin II and cellubrevin in rat skeletal muscle and in a muscle cell line. Volchuk, A., Mitsumoto, Y., He, L., Liu, Z., Habermann, E., Trimble, W., Klip, A. Biochem. J. (1994) [Pubmed]
  26. Isoform-specific exocytotic protein mRNA expression in hypothalamic magnocellular neurons: regulation after osmotic challenge. Jacobsson, G., Bean, A.J., Meister, B. Neuroendocrinology (1999) [Pubmed]
  27. Interaction of taxilin with syntaxin which does not form the SNARE complex. Nogami, S., Satoh, S., Nakano, M., Terano, A., Shirataki, H. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  28. cAMP increases surface expression of NKCC2 in rat thick ascending limbs: role of VAMP. Ortiz, P.A. Am. J. Physiol. Renal Physiol. (2006) [Pubmed]
  29. VAMP-1 and VAMP-2 gene expression in rat spinal motoneurones: differential regulation after neuronal injury. Jacobsson, G., Piehl, F., Meister, B. Eur. J. Neurosci. (1998) [Pubmed]
WikiGenes - Universities