The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Snap25  -  synaptosomal-associated protein 25

Rattus norvegicus

Synonyms: SNAP-25, SNAP-25B, SNAP-25a, SUP, Snap, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Snap25

  • Tetanus toxin (TeTx) and the various forms of botulinal neurotoxins (BoNT/A to BoNT/G) potently inhibit neurotransmission by means of their L chains which selectively proteolyze synaptic proteins such as synaptobrevin (TeTx, BoNT/B, BoNT/F), SNAP-25 (BoNT/A), and syntaxin (BoNT/C1) [1].
  • Using patch clamp techniques, we have demonstrated that the activity of the K(DR) channel subtype, K(V)1.1, identified by its specific blocker dendrodotoxin-K, is inhibited by SNAP-25 in insulinoma HIT-T15 beta cells [2].
  • In pheochromocytoma PC12 cells, SNAP-25 is phosphorylated at Ser(187), which lies in a region that is important for its function [3].
  • METHODOLOGY AND RESULTS: High-efficiency infection of rat pancreatic acini in culture with these adenoviruses by subcellular fractionation showed that the overexpressed SNAP-23, SNAP-25, and their truncated mutant proteins were uniformly targeted to the zymogen granules and plasma membrane [4].
  • We show here that BoNT/E, like BoNT/A, cleaves SNAP-25, as generated by in vitro translation or by expression in Escherichia coli [5].

Psychiatry related information on Snap25


High impact information on Snap25


Chemical compound and disease context of Snap25


Biological context of Snap25


Anatomical context of Snap25


Associations of Snap25 with chemical compounds

  • Synaptic exocytosis requires the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins syntaxin 1, SNAP-25, and synaptobrevin (VAMP) [28].
  • We now show that liposome fusion mediated by synaptic SNAREs is inhibited by botulinum neurotoxin E (BoNT/E) but can be rescued by supplementing the C-terminal portion of SNAP-25 [28].
  • Previously, we reported that application of 4-aminopyridine to hippocampal slices resulted in a persistent potentiation of synaptic transmission and the induction of a short-lasting and specific 40-kDa complex composed of synaptosomal associated protein of 25 kDa (SNAP25) and caveolin1 [29].
  • In contrast, subcutaneous injection of hypophysectomized rats with thyroid hormone decreased adrenal SNAP-25, demonstrating the potential importance of the pituitary-thyroid axis [22].
  • Ca(2+) promotes the interaction of syt with anionic phospholipids and the target membrane SNAREs (t-SNAREs) SNAP-25 and syntaxin [30].

Physical interactions of Snap25


Co-localisations of Snap25

  • These data demonstrate the functional significance of SNAP-25 as a SNARE protein in the parietal cell and show the dynamic stimulation-associated redistribution of VAMP-2 from H,K-ATPase-rich tubulovesicles to co-localize with SNAP-25 on the apical plasma membrane [36].

Regulatory relationships of Snap25


Other interactions of Snap25


Analytical, diagnostic and therapeutic context of Snap25


  1. Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. Yamasaki, S., Baumeister, A., Binz, T., Blasi, J., Link, E., Cornille, F., Roques, B., Fykse, E.M., Südhof, T.C., Jahn, R. J. Biol. Chem. (1994) [Pubmed]
  2. The 25-kDa synaptosome-associated protein (SNAP-25) binds and inhibits delayed rectifier potassium channels in secretory cells. Ji, J., Tsuk, S., Salapatek, A.M., Huang, X., Chikvashvili, D., Pasyk, E.A., Kang, Y., Sheu, L., Tsushima, R., Diamant, N., Trimble, W.S., Lotan, I., Gaisano, H.Y. J. Biol. Chem. (2002) [Pubmed]
  3. Phosphorylation of SNAP-25 on serine-187 is induced by secretagogues in insulin-secreting cells, but is not correlated with insulin secretion. Gonelle-Gispert, C., Costa, M., Takahashi, M., Sadoul, K., Halban, P. Biochem. J. (2002) [Pubmed]
  4. Cholecystokinin-regulated exocytosis in rat pancreatic acinar cells is inhibited by a C-terminus truncated mutant of SNAP-23. Huang, X., Sheu, L., Tamori, Y., Trimble, W.S., Gaisano, H.Y. Pancreas (2001) [Pubmed]
  5. Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. Binz, T., Blasi, J., Yamasaki, S., Baumeister, A., Link, E., Südhof, T.C., Jahn, R., Niemann, H. J. Biol. Chem. (1994) [Pubmed]
  6. Neuronal Differentiation Is Accompanied by Increased Levels of SNAP-25 Protein in Fetal Rat Primary Cortical Neurons: Implications in Neuronal Plasticity and Alzheimer's Disease. Bailey, J.A., Lahiri, D.K. Ann. N. Y. Acad. Sci. (2006) [Pubmed]
  7. SNAP-25 in hippocampal CA1 region is involved in memory consolidation. Hou, Q., Gao, X., Zhang, X., Kong, L., Wang, X., Bian, W., Tu, Y., Jin, M., Zhao, G., Li, B., Jing, N., Yu, L. Eur. J. Neurosci. (2004) [Pubmed]
  8. Sleep deprivation-induced protein changes in basal forebrain: implications for synaptic plasticity. Basheer, R., Brown, R., Ramesh, V., Begum, S., McCarley, R.W. J. Neurosci. Res. (2005) [Pubmed]
  9. Safety and mechanism of appetite suppression by a novel hydroxycitric acid extract (HCA-SX). Ohia, S.E., Opere, C.A., LeDay, A.M., Bagchi, M., Bagchi, D., Stohs, S.J. Mol. Cell. Biochem. (2002) [Pubmed]
  10. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Chen, Y.A., Scales, S.J., Patel, S.M., Doung, Y.C., Scheller, R.H. Cell (1999) [Pubmed]
  11. Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells. Guo, Z., Turner, C., Castle, D. Cell (1998) [Pubmed]
  12. Hrs-2 is an ATPase implicated in calcium-regulated secretion. Bean, A.J., Seifert, R., Chen, Y.A., Sacks, R., Scheller, R.H. Nature (1997) [Pubmed]
  13. Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Osen-Sand, A., Catsicas, M., Staple, J.K., Jones, K.A., Ayala, G., Knowles, J., Grenningloh, G., Catsicas, S. Nature (1993) [Pubmed]
  14. Clostridial neurotoxins compromise the stability of a low energy SNARE complex mediating NSF activation of synaptic vesicle fusion. Pellegrini, L.L., O'Connor, V., Lottspeich, F., Betz, H. EMBO J. (1995) [Pubmed]
  15. Effects of S-nitroso-cysteine on proteins that regulate exocytosis in PC12 cells: inhibitory effects on translocation of synaptophysin and ADP-ribosylation of GTP-binding proteins. Naganuma, T., Maekawa, M., Murayama, T., Nomura, Y. Jpn. J. Pharmacol. (2000) [Pubmed]
  16. Capsaicin-stimulated release of substance P from cultured dorsal root ganglion neurons: involvement of two distinct mechanisms. Purkiss, J., Welch, M., Doward, S., Foster, K. Biochem. Pharmacol. (2000) [Pubmed]
  17. Intracellular calcium and arachidonic acid increase SNAP-25 expression in cultured rat hippocampal explants, but not in cultured rat cerebellar explants. Sepúlveda, C.M., Troncoso, C.C., Lara, H., Cárdenas, A.M. Neurosci. Lett. (1998) [Pubmed]
  18. Inhibition of neurotransmitter release by peptides that mimic the N-terminal domain of SNAP-25. Apland, J.P., Adler, M., Oyler, G.A. J. Protein Chem. (2003) [Pubmed]
  19. SNAREs in native plasma membranes are active and readily form core complexes with endogenous and exogenous SNAREs. Lang, T., Margittai, M., Hölzler, H., Jahn, R. J. Cell Biol. (2002) [Pubmed]
  20. Synaptobrevin 2 is palmitoylated in synaptic vesicles prepared from adult, but not from embryonic brain. Veit, M., Becher, A., Ahnert-Hilger, G. Mol. Cell. Neurosci. (2000) [Pubmed]
  21. The C-terminal transmembrane region of synaptobrevin binds synaptophysin from adult synaptic vesicles. Yelamanchili, S.V., Reisinger, C., Becher, A., Sikorra, S., Bigalke, H., Binz, T., Ahnert-Hilger, G. Eur. J. Cell Biol. (2005) [Pubmed]
  22. The hypophysis controls expression of SNAP-25 and other SNAREs in the adrenal gland. Hepp, R., Grant, N.J., Chasserot-Golaz, S., Aunis, D., Langley, K. J. Neurocytol. (2001) [Pubmed]
  23. Modulation of Kv2.1 channel gating and TEA sensitivity by distinct domains of SNAP-25. He, Y., Kang, Y., Leung, Y.M., Xia, F., Gao, X., Xie, H., Gaisano, H.Y., Tsushima, R.G. Biochem. J. (2006) [Pubmed]
  24. Differential involvement of synaptic vesicle and presynaptic plasma membrane proteins in Alzheimer's disease. Shimohama, S., Kamiya, S., Taniguchi, T., Akagawa, K., Kimura, J. Biochem. Biophys. Res. Commun. (1997) [Pubmed]
  25. Estrogen down-regulates mRNA encoding the exocytotic protein SNAP-25 in the rat pituitary gland. Jacobsson, G., Razani, H., Ogren, S.O., Meister, B. J. Neuroendocrinol. (1998) [Pubmed]
  26. Promiscuous interaction of SNAP-25 with all plasma membrane syntaxins in a neuroendocrine cell. Bajohrs, M., Darios, F., Peak-Chew, S.Y., Davletov, B. Biochem. J. (2005) [Pubmed]
  27. Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Sheng, Z.H., Rettig, J., Cook, T., Catterall, W.A. Nature (1996) [Pubmed]
  28. Determinants of liposome fusion mediated by synaptic SNARE proteins. Schuette, C.G., Hatsuzawa, K., Margittai, M., Stein, A., Riedel, D., Küster, P., König, M., Seidel, C., Jahn, R. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  29. ATP dependence of the SNARE/caveolin 1 interaction in the hippocampus. Magga, J.M., Kay, J.G., Davy, A., Poulton, N.P., Robbins, S.M., Braun, J.E. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  30. Ca(2+)-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Bhalla, A., Chicka, M.C., Tucker, W.C., Chapman, E.R. Nat. Struct. Mol. Biol. (2006) [Pubmed]
  31. Crystal structure and biophysical properties of a complex between the N-terminal SNARE region of SNAP25 and syntaxin 1a. Misura, K.M., Gonzalez, L.C., May, A.P., Scheller, R.H., Weis, W.I. J. Biol. Chem. (2001) [Pubmed]
  32. Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machine. Edelmann, L., Hanson, P.I., Chapman, E.R., Jahn, R. EMBO J. (1995) [Pubmed]
  33. Evidence for SNARE zippering during Ca2+-triggered exocytosis in PC12 cells. Matos, M.F., Mukherjee, K., Chen, X., Rizo, J., Südhof, T.C. Neuropharmacology (2003) [Pubmed]
  34. Fusion pore dynamics are regulated by synaptotagmin*t-SNARE interactions. Bai, J., Wang, C.T., Richards, D.A., Jackson, M.B., Chapman, E.R. Neuron (2004) [Pubmed]
  35. An immunohistochemical method that distinguishes free from complexed SNAP-25. Xiao, J., Xia, Z., Pradhan, A., Zhou, Q., Liu, Y. J. Neurosci. Res. (2004) [Pubmed]
  36. Localization and function of soluble N-ethylmaleimide-sensitive factor attachment protein-25 and vesicle-associated membrane protein-2 in functioning gastric parietal cells. Karvar, S., Yao, X., Crothers, J.M., Liu, Y., Forte, J.G. J. Biol. Chem. (2002) [Pubmed]
  37. SNAP-25 regulation during adrenal gland development: comparison with differentiation markers and other SNAREs. Hepp, R., Grant, N.J., Aunis, D., Langley, K. J. Comp. Neurol. (2000) [Pubmed]
  38. Proteolysis of synaptobrevin, syntaxin, and SNAP-25 in alveolar epithelial type II cells. Zimmerman, U.J., Malek, S.K., Liu, L., Li, H.L. IUBMB Life (1999) [Pubmed]
  39. Interaction of SNARE complexes with P/Q-type calcium channels in rat cerebellar synaptosomes. Martin-Moutot, N., Charvin, N., Leveque, C., Sato, K., Nishiki, T., Kozaki, S., Takahashi, M., Seagar, M. J. Biol. Chem. (1996) [Pubmed]
  40. Interaction of cysteine string proteins with the alpha1A subunit of the P/Q-type calcium channel. Leveque, C., Pupier, S., Marqueze, B., Geslin, L., Kataoka, M., Takahashi, M., De Waard, M., Seagar, M. J. Biol. Chem. (1998) [Pubmed]
  41. Characterization of SNARE protein expression in beta cell lines and pancreatic islets. Wheeler, M.B., Sheu, L., Ghai, M., Bouquillon, A., Grondin, G., Weller, U., Beaudoin, A.R., Bennett, M.K., Trimble, W.S., Gaisano, H.Y. Endocrinology (1996) [Pubmed]
  42. Differential subcellular localization of SNAP-25a and SNAP-25b RNA transcripts in spinal motoneurons and plasticity in expression after nerve injury. Jacobsson, G., Piehl, F., Bark, I.C., Zhang, X., Meister, B. Brain Res. Mol. Brain Res. (1996) [Pubmed]
  43. Effect of hypothyroidism on synaptosomal-associated protein of 25 kDa and syntaxin-1 expression in adenohypophyses of rat. Quintanar, J.L., Salinas, E. J. Endocrinol. Invest. (2002) [Pubmed]
WikiGenes - Universities