The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Vamp1  -  vesicle-associated membrane protein 1

Rattus norvegicus

Synonyms: Syb1, Synaptobrevin-1, VAMP-1, Vesicle-associated membrane protein 1
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Vamp1


High impact information on Vamp1


Chemical compound and disease context of Vamp1

  • Tetanus toxin (TeTx) and the various forms of botulinal neurotoxins (BoNT/A to BoNT/G) potently inhibit neurotransmission by means of their L chains which selectively proteolyze synaptic proteins such as synaptobrevin (TeTx, BoNT/B, BoNT/F), SNAP-25 (BoNT/A), and syntaxin (BoNT/C1) [10].
  • Here, we show that botulinum toxin type G cleaves rat synaptobrevin 2 between Ala81 and Ala82, a peptide bond that differs from those attacked by tetanus toxin and the botulinal toxins types B, D, and F. Synaptobrevin isoforms carrying a Gly in the P1 position are poor substrates [11].
  • Cleavage of synaptobrevin and SNAP-25 by the neurotoxic clostridial proteases tetanus toxin and botulinum toxin A had no effect on assembly and disassembly of the 20S complex; however, the stability of its SDS-resistant SNARE core was compromised [12].
  • In this study we show that proteolysis of both cellubrevin and VAMP, induced by electroporation of isolated rat adipocytes with tetanus toxin, does not impair insulin-stimulated glucose transport or GLUT4 translocation [13].
  • Preincubation with 1 microM tetanus toxin light chain for 15 min attenuated calcium-induced histamine release by 40-50% and almost completely cleaved synaptobrevin [14].

Biological context of Vamp1


Anatomical context of Vamp1


Associations of Vamp1 with chemical compounds

  • We used the Torpedo gene to isolate two independent classes of VAMP cDNA clones from rat brain [17].
  • However, cleavability was restored when the peptide is further extended at the NH2 terminus (Thr27-Thr116) demonstrating that NH2 terminally located sequences of synaptobrevin which are distal from the respective cleavage sites are required for proteolysis [10].
  • The synaptobrevin/vesicle-associated membrane protein (VAMP) family of proteins, which are essential for neurotransmitter release, are the vesicle donor soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) proteins first described in synaptic vesicles at nerve terminals [20].
  • Furthermore, we have utilized sucrose density gradient subcellular fractionation and immunoprecipitation protocols to investigate the synaptobrevin isotypes present on secretory granules and to probe using electrophysiological methods their functional relationship to secretion [21].
  • Here, we have used a defined reconstituted fusion assay to determine directly whether syt-t-SNARE interactions couple Ca(2+) to membrane fusion by comparing the effects of Ca(2+)-syt on neuronal (SNAP-25, syntaxin and synaptobrevin) and yeast (Sso1p, Sec9c and Snc2p) SNAREs [22].

Physical interactions of Vamp1


Enzymatic interactions of Vamp1


Regulatory relationships of Vamp1


Other interactions of Vamp1


Analytical, diagnostic and therapeutic context of Vamp1


  1. Expression of VAMP-2-like protein in kidney collecting duct intracellular vesicles. Colocalization with Aquaporin-2 water channels. Nielsen, S., Marples, D., Birn, H., Mohtashami, M., Dalby, N.O., Trimble, M., Knepper, M. J. Clin. Invest. (1995) [Pubmed]
  2. Mutational analysis of synaptobrevin transmembrane domain oligomerization. Bowen, M.E., Engelman, D.M., Brunger, A.T. Biochemistry (2002) [Pubmed]
  3. Activity-dependent changes of the presynaptic synaptophysin-synaptobrevin complex in adult rat brain. Hinz, B., Becher, A., Mitter, D., Schulze, K., Heinemann, U., Draguhn, A., Ahnert-Hilger, G. Eur. J. Cell Biol. (2001) [Pubmed]
  4. Endocytosis of Clostridium botulinum type B neurotoxin into rat brain synaptosomes. Kohda, T., Kamata, Y., Kozaki, S. J. Vet. Med. Sci. (2000) [Pubmed]
  5. Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. Baumert, M., Maycox, P.R., Navone, F., De Camilli, P., Jahn, R. EMBO J. (1989) [Pubmed]
  6. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Chen, Y.A., Scales, S.J., Patel, S.M., Doung, Y.C., Scheller, R.H. Cell (1999) [Pubmed]
  7. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Hanson, P.I., Roth, R., Morisaki, H., Jahn, R., Heuser, J.E. Cell (1997) [Pubmed]
  8. A targeting signal in VAMP regulating transport to synaptic vesicles. Grote, E., Hao, J.C., Bennett, M.K., Kelly, R.B. Cell (1995) [Pubmed]
  9. Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Hu, K., Carroll, J., Fedorovich, S., Rickman, C., Sukhodub, A., Davletov, B. Nature (2002) [Pubmed]
  10. Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. Yamasaki, S., Baumeister, A., Binz, T., Blasi, J., Link, E., Cornille, F., Roques, B., Fykse, E.M., Südhof, T.C., Jahn, R. J. Biol. Chem. (1994) [Pubmed]
  11. Botulinum neurotoxin type G proteolyses the Ala81-Ala82 bond of rat synaptobrevin 2. Yamasaki, S., Binz, T., Hayashi, T., Szabo, E., Yamasaki, N., Eklund, M., Jahn, R., Niemann, H. Biochem. Biophys. Res. Commun. (1994) [Pubmed]
  12. Clostridial neurotoxins compromise the stability of a low energy SNARE complex mediating NSF activation of synaptic vesicle fusion. Pellegrini, L.L., O'Connor, V., Lottspeich, F., Betz, H. EMBO J. (1995) [Pubmed]
  13. Proteolytic cleavage of cellubrevin and vesicle-associated membrane protein (VAMP) by tetanus toxin does not impair insulin-stimulated glucose transport or GLUT4 translocation in rat adipocytes. Hajduch, E., Aledo, J.C., Watts, C., Hundal, H.S. Biochem. J. (1997) [Pubmed]
  14. Functional importance of synaptobrevin and SNAP-25 during exocytosis of histamine by rat gastric enterochromaffin-like cells. Höhne-Zell, B., Galler, A., Schepp, W., Gratzl, M., Prinz, C. Endocrinology (1997) [Pubmed]
  15. The vesicle-associated membrane protein family of proteins in rat pancreatic and parotid acinar cells. Gaisano, H.Y., Sheu, L., Grondin, G., Ghai, M., Bouquillon, A., Lowe, A., Beaudoin, A., Trimble, W.S. Gastroenterology (1996) [Pubmed]
  16. Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machine. Edelmann, L., Hanson, P.I., Chapman, E.R., Jahn, R. EMBO J. (1995) [Pubmed]
  17. Two vesicle-associated membrane protein genes are differentially expressed in the rat central nervous system. Elferink, L.A., Trimble, W.S., Scheller, R.H. J. Biol. Chem. (1989) [Pubmed]
  18. Tissue-specific alternative RNA splicing of rat vesicle-associated membrane protein-1 (VAMP-1). Mandic, R., Trimble, W.S., Lowe, A.W. Gene (1997) [Pubmed]
  19. Cellubrevin and synaptobrevins: similar subcellular localization and biochemical properties in PC12 cells. Chilcote, T.J., Galli, T., Mundigl, O., Edelmann, L., McPherson, P.S., Takei, K., De Camilli, P. J. Cell Biol. (1995) [Pubmed]
  20. Distribution of synaptobrevin/VAMP 1 and 2 in rat brain. Raptis, A., Torrejón-Escribano, B., Gómez de Aranda, I., Blasi, J. J. Chem. Neuroanat. (2005) [Pubmed]
  21. Characterization and distribution of SNARE proteins at neuroendocrine nerve endings. Jurgutis, P., Shuang, R., Fletcher, A., Stuenkel, E.L. Neuroendocrinology (1996) [Pubmed]
  22. Ca(2+)-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Bhalla, A., Chicka, M.C., Tucker, W.C., Chapman, E.R. Nat. Struct. Mol. Biol. (2006) [Pubmed]
  23. The SNARE Vti1a-beta is localized to small synaptic vesicles and participates in a novel SNARE complex. Antonin, W., Riedel, D., von Mollard, G.F. J. Neurosci. (2000) [Pubmed]
  24. Hrs-2 is an ATPase implicated in calcium-regulated secretion. Bean, A.J., Seifert, R., Chen, Y.A., Sacks, R., Scheller, R.H. Nature (1997) [Pubmed]
  25. Differential interaction patterns in binding assays between recombinant syntaxin 1 and synaptobrevin isoforms. Pérez-Brangulí, F., Ruiz-Montasell, B., Blasi, J. FEBS Lett. (1999) [Pubmed]
  26. Evidence for structural and functional diversity among SDS-resistant SNARE complexes in neuroendocrine cells. Kubista, H., Edelbauer, H., Boehm, S. J. Cell. Sci. (2004) [Pubmed]
  27. The C-terminal transmembrane region of synaptobrevin binds synaptophysin from adult synaptic vesicles. Yelamanchili, S.V., Reisinger, C., Becher, A., Sikorra, S., Bigalke, H., Binz, T., Ahnert-Hilger, G. Eur. J. Cell Biol. (2005) [Pubmed]
  28. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Tucker, W.C., Weber, T., Chapman, E.R. Science (2004) [Pubmed]
  29. Specificity and regulation of a synaptic vesicle docking complex. Pevsner, J., Hsu, S.C., Braun, J.E., Calakos, N., Ting, A.E., Bennett, M.K., Scheller, R.H. Neuron (1994) [Pubmed]
  30. Synaptobrevin 2 is palmitoylated in synaptic vesicles prepared from adult, but not from embryonic brain. Veit, M., Becher, A., Ahnert-Hilger, G. Mol. Cell. Neurosci. (2000) [Pubmed]
  31. The transmembrane domain of syntaxin 1A is critical for cytoplasmic domain protein-protein interactions. Lewis, J.L., Dong, M., Earles, C.A., Chapman, E.R. J. Biol. Chem. (2001) [Pubmed]
  32. The synaptophysin-synaptobrevin complex: a hallmark of synaptic vesicle maturation. Becher, A., Drenckhahn, A., Pahner, I., Margittai, M., Jahn, R., Ahnert-Hilger, G. J. Neurosci. (1999) [Pubmed]
  33. VAMP-1 and VAMP-2 gene expression in rat spinal motoneurones: differential regulation after neuronal injury. Jacobsson, G., Piehl, F., Meister, B. Eur. J. Neurosci. (1998) [Pubmed]
  34. Differential expression of VAMP2/synaptobrevin-2 after antidepressant and electroconvulsive treatment in rat frontal cortex. Yamada, M., Takahashi, K., Tsunoda, M., Nishioka, G., Kudo, K., Ohata, H., Kamijima, K., Higuchi, T., Momose, K., Yamada, M. Pharmacogenomics J. (2002) [Pubmed]
WikiGenes - Universities