The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

FTL  -  ferritin, light polypeptide

Homo sapiens

Synonyms: Ferritin L subunit, Ferritin light chain, LFTD, MGC71996, NBIA3
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of FTL


Psychiatry related information on FTL

  • Overall, students were found to show strong stereotyping effects, rating PL infants more negatively than FTL infants when asked questions about their expectations for the infants' growth and development as well as their expectations for how mothers of these infants might behave during a medically related contact concerning her infant [6].

High impact information on FTL


Chemical compound and disease context of FTL


Biological context of FTL


Anatomical context of FTL


Associations of FTL with chemical compounds


Regulatory relationships of FTL


Other interactions of FTL

  • The potential application of FTL and IGFBP1 in management of patients with HM should be explored [14].
  • The mRNA expression of two of the corresponding genes (apolipoprotein E, ferritin light chain) is already known to be up-regulated during MAC maturation [24].
  • In this study, 253 patients with a clinical diagnosis of idiopathic PD were screened for the insertion in the FTL gene by polymerase chain reaction-restriction fragment length polymorphism method [18].
  • Ferritin light chain down-modulation generates depigmentation in human metastatic melanoma cells by influencing tyrosinase maturation [1].
  • Mean FT was highest for FTS (0.41 nmol/L), followed by FTV (0.35 nmol/L), and FTL (0.29 nmol/L) [25].

Analytical, diagnostic and therapeutic context of FTL

  • CONCLUSIONS: Findings showed that reduced expression of genes related to cell invasion and immunosuppression, especially FTL and IGFBP1, were associated with development of GTN, and this finding may provide a better understanding of the pathogenesis of GTN [14].
  • The ferritin light polypeptide (FTL) gene overexpression was confirmed by real time quantitative PCR [26].
  • The FTL was applied to the study of interactions between spontaneous respiratory effort and mechanical inflation in preterm newborn babies undergoing mechanical ventilation [27].
  • Sequence analysis of the iron-responsive element of the ferritin light chain on chromosome 19q13.3-qter was performed [28].
  • SELDI-TOF-MS protein profiling clearly showed that a high level of cytosolic ubiquitin and/or a low level of FLC were associated with a good prognosis in breast cancer [29].


  1. Ferritin light chain down-modulation generates depigmentation in human metastatic melanoma cells by influencing tyrosinase maturation. Maresca, V., Flori, E., Cardinali, G., Briganti, S., Lombardi, D., Mileo, A.M., Paggi, M.G., Picardo, M. J. Cell. Physiol. (2006) [Pubmed]
  2. Characterization of the l-ferritin variant 460InsA responsible of a hereditary ferritinopathy disorder. Cozzi, A., Santambrogio, P., Corsi, B., Campanella, A., Arosio, P., Levi, S. Neurobiol. Dis. (2006) [Pubmed]
  3. Neuroferritinopathy: missense mutation in FTL causing early-onset bilateral pallidal involvement. Maciel, P., Cruz, V.T., Constante, M., Iniesta, I., Costa, M.C., Gallati, S., Sousa, N., Sequeiros, J., Coutinho, P., Santos, M.M. Neurology (2005) [Pubmed]
  4. Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Heller, R.A., Schena, M., Chai, A., Shalon, D., Bedilion, T., Gilmore, J., Woolley, D.E., Davis, R.W. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  5. Ferritin crystal cataracts in hereditary hyperferritinemia cataract syndrome. Brooks, D.G., Manova-Todorova, K., Farmer, J., Lobmayr, L., Wilson, R.B., Eagle, R.C., St Pierre, T.G., Stambolian, D. Invest. Ophthalmol. Vis. Sci. (2002) [Pubmed]
  6. The prematurity stereotype in Israeli health care providers. Stern, M., Moritzen, S.K., Carmel, S., Olexa-Andrews, M. Medical education. (2001) [Pubmed]
  7. STAT3 activation is a critical step in gp130-mediated terminal differentiation and growth arrest of a myeloid cell line. Minami, M., Inoue, M., Wei, S., Takeda, K., Matsumoto, M., Kishimoto, T., Akira, S. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  8. Human creatine kinase genes on chromosomes 15 and 19, and proximity of the gene for the muscle form to the genes for apolipoprotein C2 and excision repair. Stallings, R.L., Olson, E., Strauss, A.W., Thompson, L.H., Bachinski, L.L., Siciliano, M.J. Am. J. Hum. Genet. (1988) [Pubmed]
  9. Human ferritin genes: chromosomal assignments and polymorphisms. Gatti, R.A., Shaked, R., Mohandas, T.K., Salser, W. Am. J. Hum. Genet. (1987) [Pubmed]
  10. Structure of human ferritin light subunit messenger RNA: comparison with heavy subunit message and functional implications. Dörner, M.H., Salfeld, J., Will, H., Leibold, E.A., Vass, J.K., Munro, H.N. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  11. Hereditary hyperferritinemia-cataract syndrome: relationship between phenotypes and specific mutations in the iron-responsive element of ferritin light-chain mRNA. Cazzola, M., Bergamaschi, G., Tonon, L., Arbustini, E., Grasso, M., Vercesi, E., Barosi, G., Bianchi, P.E., Cairo, G., Arosio, P. Blood (1997) [Pubmed]
  12. Cellular expression, localization and interactions of the product of the human MOST-1 gene associated with breast and prostate cancers. Tan, J.M., Chow, V.T. Int. J. Oncol. (2007) [Pubmed]
  13. Iron regulation and the cell cycle: identification of an iron-responsive element in the 3'-untranslated region of human cell division cycle 14A mRNA by a refined microarray-based screening strategy. Sanchez, M., Galy, B., Dandekar, T., Bengert, P., Vainshtein, Y., Stolte, J., Muckenthaler, M.U., Hentze, M.W. J. Biol. Chem. (2006) [Pubmed]
  14. Differential expression of insulin-like growth factor binding protein 1 and ferritin light polypeptide in gestational trophoblastic neoplasia: combined cDNA suppression subtractive hybridization and microarray study. Feng, H.C., Tsao, S.W., Ngan, H.Y., Xue, W.C., Chiu, P.M., Cheung, A.N. Cancer (2005) [Pubmed]
  15. Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide gene. Vidal, R., Ghetti, B., Takao, M., Brefel-Courbon, C., Uro-Coste, E., Glazier, B.S., Siani, V., Benson, M.D., Calvas, P., Miravalle, L., Rascol, O., Delisle, M.B. J. Neuropathol. Exp. Neurol. (2004) [Pubmed]
  16. Exclusion of ferritins and iron-responsive element (IRE)-binding proteins as candidates for the hemochromatosis gene. Zheng, H., Bhavsar, D., Volz, A., Ziegler, A., Drysdale, J. Hum. Genet. (1994) [Pubmed]
  17. Assignment of ferritin L gene (FTL) to human chromosome band 19q13.3 by in situ hybridization. Gasparini, P., Calvano, S., Memeo, E., Bisceglia, L., Zelante, L. Ann. Genet. (1997) [Pubmed]
  18. Screening of ferritin light polypeptide 460-461InsA mutation in Parkinson's disease patients in North America. Chen, R., Langston, J.W., Chan, P. Neurosci. Lett. (2002) [Pubmed]
  19. The iron-binding protein ferritin is expressed in cells of the osteoblastic lineage in vitro and in vivo. Spanner, M., Weber, K., Lanske, B., Ihbe, A., Siggelkow, H., Schütze, H., Atkinson, M.J. Bone (1995) [Pubmed]
  20. Proteomic approach to coronary atherosclerosis shows ferritin light chain as a significant marker: evidence consistent with iron hypothesis in atherosclerosis. You, S.A., Archacki, S.R., Angheloiu, G., Moravec, C.S., Rao, S., Kinter, M., Topol, E.J., Wang, Q. Physiol. Genomics (2003) [Pubmed]
  21. A high-throughput screening system for genes extending life-span. Chen, C., Dewaele, S., Braeckman, B., Desmyter, L., Verstraelen, J., Borgonie, G., Vanfleteren, J., Contreras, R. Exp. Gerontol. (2003) [Pubmed]
  22. Neuroferritinopathy: a window on the role of iron in neurodegeneration. Crompton, D.E., Chinnery, P.F., Fey, C., Curtis, A.R., Morris, C.M., Kierstan, J., Burt, A., Young, F., Coulthard, A., Curtis, A., Ince, P.G., Bates, D., Jackson, M.J., Burn, J. Blood Cells Mol. Dis. (2002) [Pubmed]
  23. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells. Chen, H., Davidson, T., Singleton, S., Garrick, M.D., Costa, M. Toxicol. Appl. Pharmacol. (2005) [Pubmed]
  24. Differential screening identifies genetic markers of monocyte to macrophage maturation. Krause, S.W., Rehli, M., Kreutz, M., Schwarzfischer, L., Paulauskis, J.D., Andreesen, R. J. Leukoc. Biol. (1996) [Pubmed]
  25. Calculation of bioavailable and free testosterone in men: a comparison of 5 published algorithms. de Ronde, W., van der Schouw, Y.T., Pols, H.A., Gooren, L.J., Muller, M., Grobbee, D.E., de Jong, F.H. Clin. Chem. (2006) [Pubmed]
  26. Microdissection, mRNA amplification and microarray: a study of pleural mesothelial and malignant mesothelioma cells. Mohr, S., Bottin, M.C., Lannes, B., Neuville, A., Bellocq, J.P., Keith, G., Rihn, B.H. Biochimie (2004) [Pubmed]
  27. Use of the frequency-tracking locus in estimating the degree of respiratory entrainment in preterm infants. Bignall, S., Kitney, R.I., Summers, D. Physiological measurement. (1993) [Pubmed]
  28. Hereditary hyperferritinemia-cataract syndrome: prevalence, lens morphology, spectrum of mutations, and clinical presentations. Craig, J.E., Clark, J.B., McLeod, J.L., Kirkland, M.A., Grant, G., Elder, J.E., Toohey, M.G., Kowal, L., Savoia, H.F., Chen, C., Roberts, S., Wirth, M.G., Mackey, D.A. Arch. Ophthalmol. (2003) [Pubmed]
  29. Surface-enhanced laser desorption/ionization time of flight mass spectrometry protein profiling identifies ubiquitin and ferritin light chain as prognostic biomarkers in node-negative breast cancer tumors. Ricolleau, G., Charbonnel, C., Lodé, L., Loussouarn, D., Joalland, M.P., Bogumil, R., Jourdain, S., Minvielle, S., Campone, M., Déporte-Fety, R., Campion, L., Jézéquel, P. Proteomics (2006) [Pubmed]
WikiGenes - Universities