The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Kcnc1  -  potassium channel, voltage gated Shaw...

Rattus norvegicus

Synonyms: KShIIIB, Kv3.1, Kv4, NGK2, NGK2-KV4, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Kcnc1

  • The hearing loss caused by aminoglycoside antibiotics may be partially mediated by their inhibition of Kv3.1 current in auditory neurons [1].
  • Biophysical properties of Kv3.1 channels in SH-SY5Y human neuroblastoma cells [2].
 

High impact information on Kcnc1

  • In the resulting chimeric channel, the single channel conductance and blockade by external and internal tetraethylammonium (TEA) ion were characteristic of the donor NGK2 channel [3].
  • Acoustic environment determines phosphorylation state of the Kv3.1 potassium channel in auditory neurons [4].
  • Using computational modeling, we show that high amounts of Kv3.1 current decrease the timing accuracy of action potentials but enable neurons to follow high-frequency stimuli [4].
  • It is widely accepted that K+ channels with Kv3.1 or Kv3.2 subunits underlie fast, delayed-rectifier (DR) currents that endow neurons with this FS ability [5].
  • By electron immunomicroscopy we have found that the mammalian Shaw family potassium channel Kv3.1 is localized on spine-like protrusions, adjacent to postsynaptic membranes of bushy cells in the cochlear nucleus [6].
 

Chemical compound and disease context of Kcnc1

 

Biological context of Kcnc1

  • The Kv3.1 potassium channel gene gives rise to two different channel proteins, Kv3.1a and Kv3.1b, by alternative splicing of nuclear RNA [7].
  • We conclude that position 374 is responsible for differences in GK+ and GRb+ between Kv2.1 and Kv3.1 and, given its location near residues critical for block by internal tetraethylammonium, may be part of a cation binding site deep within the pore [8].
  • Sustained upregulation in embryonic spinal neurons of a Kv3.1 potassium channel gene encoding a delayed rectifier current [9].
  • The simulations indicate that Kv3.1 conductances may contribute to repolarization of large synaptic potentials [10].
  • In the dorsolateral striatum, only parvalbumin mRNA-positive neurons expressed the mRNA encoding the potassium channel Kv3.1, a member of the Shaw family of potassium channels with rapid activation and inactivation kinetics, usually found in fast-firing neurons such as the basket cells of the hippocampus [11].
 

Anatomical context of Kcnc1

  • NGK2-KV4 transcripts are particularly abundant in the cerebellar cortex, where KShIIIA expression is very weak [12].
  • Single-cell RT-PCR analysis of mRNA revealed that Kv3 (Kv3.1, Kv3.2) subunit transcripts were expressed in almost all (89%) of the interneurons but only in 17% of the pyramidal neurons [13].
  • Properties of interneurones in the intermediolateral cell column of the rat spinal cord: role of the potassium channel subunit Kv3.1 [14].
  • Kv3.1-Kv3.2 channels underlie a high-voltage-activating component of the delayed rectifier K+ current in projecting neurons from the globus pallidus [15].
  • We have found that the expression levels of Kv3.1 transcripts increase in inferior colliculus neurons before the onset of hearing and then remain relatively constant [16].
 

Associations of Kcnc1 with chemical compounds

 

Regulatory relationships of Kcnc1

  • These properties are consistent with the hypothesis that the rapidly deactivating current is attributable to Kv3.1/3.2 channels and the slowly deactivating current to Kv2.1-containing channels [20].
 

Other interactions of Kcnc1

 

Analytical, diagnostic and therapeutic context of Kcnc1

References

  1. Aminoglycosides block the Kv3.1 potassium channel and reduce the ability of inferior colliculus neurons to fire at high frequencies. Liu, S.Q., Kaczmarek, L.K. J. Neurobiol. (2005) [Pubmed]
  2. Biophysical properties of Kv3.1 channels in SH-SY5Y human neuroblastoma cells. Friederich, P., Dilger, J.P., Isbrandt, D., Sauter, K., Pongs, O., Urban, B.W. Recept. Channels (2003) [Pubmed]
  3. Exchange of conduction pathways between two related K+ channels. Hartmann, H.A., Kirsch, G.E., Drewe, J.A., Taglialatela, M., Joho, R.H., Brown, A.M. Science (1991) [Pubmed]
  4. Acoustic environment determines phosphorylation state of the Kv3.1 potassium channel in auditory neurons. Song, P., Yang, Y., Barnes-Davies, M., Bhattacharjee, A., Hamann, M., Forsythe, I.D., Oliver, D.L., Kaczmarek, L.K. Nat. Neurosci. (2005) [Pubmed]
  5. Kv3.4 subunits enhance the repolarizing efficiency of Kv3.1 channels in fast-spiking neurons. Baranauskas, G., Tkatch, T., Nagata, K., Yeh, J.Z., Surmeier, D.J. Nat. Neurosci. (2003) [Pubmed]
  6. Activation of Kv3.1 channels in neuronal spine-like structures may induce local potassium ion depletion. Wang, L.Y., Gan, L., Perney, T.M., Schwartz, I., Kaczmarek, L.K. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  7. The expression of two splice variants of the Kv3.1 potassium channel gene is regulated by different signaling pathways. Liu, S.J., Kaczmarek, L.K. J. Neurosci. (1998) [Pubmed]
  8. A single nonpolar residue in the deep pore of related K+ channels acts as a K+:Rb+ conductance switch. Kirsch, G.E., Drewe, J.A., Taglialatela, M., Joho, R.H., DeBiasi, M., Hartmann, H.A., Brown, A.M. Biophys. J. (1992) [Pubmed]
  9. Sustained upregulation in embryonic spinal neurons of a Kv3.1 potassium channel gene encoding a delayed rectifier current. Gurantz, D., Lautermilch, N.J., Watt, S.D., Spitzer, N.C. J. Neurobiol. (2000) [Pubmed]
  10. Localization of a high threshold potassium channel in the rat cochlear nucleus. Perney, T.M., Kaczmarek, L.K. J. Comp. Neurol. (1997) [Pubmed]
  11. GABA-ergic interneurons of the striatum express the Shaw-like potassium channel Kv3.1. Lenz, S., Perney, T.M., Qin, Y., Robbins, E., Chesselet, M.F. Synapse (1994) [Pubmed]
  12. Region-specific expression of a K+ channel gene in brain. Rudy, B., Kentros, C., Weiser, M., Fruhling, D., Serodio, P., Vega-Saenz de Miera, E., Ellisman, M.H., Pollock, J.A., Baker, H. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  13. Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. Martina, M., Schultz, J.H., Ehmke, H., Monyer, H., Jonas, P. J. Neurosci. (1998) [Pubmed]
  14. Properties of interneurones in the intermediolateral cell column of the rat spinal cord: role of the potassium channel subunit Kv3.1. Deuchars, S.A., Brooke, R.E., Frater, B., Deuchars, J. Neuroscience (2001) [Pubmed]
  15. Kv3.1-Kv3.2 channels underlie a high-voltage-activating component of the delayed rectifier K+ current in projecting neurons from the globus pallidus. Hernández-Pineda, R., Chow, A., Amarillo, Y., Moreno, H., Saganich, M., Vega-Saenz de Miera, E.C., Hernández-Cruz, A., Rudy, B. J. Neurophysiol. (1999) [Pubmed]
  16. Depolarization selectively increases the expression of the Kv3.1 potassium channel in developing inferior colliculus neurons. Liu, S.Q., Kaczmarek, L.K. J. Neurosci. (1998) [Pubmed]
  17. Modulation of Kv3.1b potassium channel phosphorylation in auditory neurons by conventional and novel protein kinase C isozymes. Song, P., Kaczmarek, L.K. J. Biol. Chem. (2006) [Pubmed]
  18. Effects of norfluoxetine, the major metabolite of fluoxetine, on the cloned neuronal potassium channel Kv3.1. Choi, B.H., Choi, J.S., Yoon, S.H., Rhie, D.J., Min, D.S., Jo, Y.H., Kim, M.S., Hahn, S.J. Neuropharmacology (2001) [Pubmed]
  19. Characterization of N-glycosylation consensus sequences in the Kv3.1 channel. Brooks, N.L., Corey, M.J., Schwalbe, R.A. FEBS J. (2006) [Pubmed]
  20. Delayed rectifier currents in rat globus pallidus neurons are attributable to Kv2.1 and Kv3.1/3.2 K(+) channels. Baranauskas, G., Tkatch, T., Surmeier, D.J. J. Neurosci. (1999) [Pubmed]
  21. Age-related changes in the distribution of Kv1.1 and Kv3.1 in rat cochlear nuclei. Jung, d.o. .K., Lee, S.Y., Kim, D., Joo, K.M., Cha, C.I., Yang, H.S., Lee, W.B., Chung, Y.H. Neurol. Res. (2005) [Pubmed]
  22. Expression of the mRNAs for the Kv3.1 potassium channel gene in the adult and developing rat brain. Perney, T.M., Marshall, J., Martin, K.A., Hockfield, S., Kaczmarek, L.K. J. Neurophysiol. (1992) [Pubmed]
  23. Differential characterization of three alternative spliced isoforms of DPPX. Nadal, M.S., Amarillo, Y., Vega-Saenz de Miera, E., Rudy, B. Brain Res. (2006) [Pubmed]
  24. Expression of the Kv3.1 potassium channel in the avian auditory brainstem. Parameshwaran, S., Carr, C.E., Perney, T.M. J. Neurosci. (2001) [Pubmed]
 
WikiGenes - Universities