The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Cochlear Nucleus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cochlear Nucleus

 

High impact information on Cochlear Nucleus

 

Chemical compound and disease context of Cochlear Nucleus

 

Biological context of Cochlear Nucleus

 

Anatomical context of Cochlear Nucleus

 

Associations of Cochlear Nucleus with chemical compounds

 

Gene context of Cochlear Nucleus

  • The data suggest that the composition of GluR1-GluR4 subunits on neurons in the cochlear nucleus may be related to presynaptic input; moreover, heterogeneous patterns of expression of the GluR3 subunit, in addition, suggest that variability in mRNA levels within one population of morphologically defined cells is present [25].
  • Few well-defined nuclei exhibited positive TLR4 transcript: the supramamillary nucleus, cochlear nucleus, and the lateral reticular nucleus [26].
  • CR was found in somata of the cochlear nucleus and peripheral aspects of the inferior colliculus as well as in fibers extending into the superior olivary complex and the nuclei of the lateral lemniscus [27].
  • Diffuse immunoreactivity for both BDNF and NT-3 was first detected at P3 in the cochlear nucleus and in several second order auditory nuclei in the superior olivary complex [28].
  • NT-3 and NT-4 immunoreactivity increased in the following stages and in the adult moderate labelings were observed in most neurons of the cochlear nucleus, the superior olivary nuclei and the IC [29].
 

Analytical, diagnostic and therapeutic context of Cochlear Nucleus

References

  1. Trigeminal ganglion innervates the auditory brainstem. Shore, S.E., Vass, Z., Wys, N.L., Altschuler, R.A. J. Comp. Neurol. (2000) [Pubmed]
  2. Synaptophysin in the cochlear nucleus following acoustic trauma. Muly, S.M., Gross, J.S., Morest, D.K., Potashner, S.J. Exp. Neurol. (2002) [Pubmed]
  3. Development of brainstem auditory evoked potentials in heterozygous and homozygous jaundiced Gunn rats. Shapiro, S.M., Hecox, K.E. Brain Res. (1988) [Pubmed]
  4. Morphological changes in the cochlear nucleus of congenitally deaf white cats. Saada, A.A., Niparko, J.K., Ryugo, D.K. Brain Res. (1996) [Pubmed]
  5. Experimental facial myokymia in cat. Zaaroor, M., Starr, A. Acta neurologica Scandinavica. (1997) [Pubmed]
  6. Kainic acid injections result in degeneration of cochlear nucleus cells innervated by the auditory nerve. Bird, S.J., Gulley, R.L., Wenthold, R.J., Fex, J. Science (1978) [Pubmed]
  7. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Wang, V.Y., Rose, M.F., Zoghbi, H.Y. Neuron (2005) [Pubmed]
  8. Reciprocal developmental regulation of presynaptic ionotropic receptors. Turecek, R., Trussell, L.O. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  9. Directing gene expression to cerebellar granule cells using gamma-aminobutyric acid type A receptor alpha6 subunit transgenes. Bahn, S., Jones, A., Wisden, W. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  10. Auditory brainstem responses of CBA/J mice with neonatal conductive hearing losses and treatment with GM1 ganglioside. Money, M.K., Pippin, G.W., Weaver, K.E., Kirsch, J.P., Webster, D.B. Hear. Res. (1995) [Pubmed]
  11. Activation of a metabotropic glutamate receptor increases intracellular calcium concentrations in neurons of the avian cochlear nucleus. Zirpel, L., Lachica, E.A., Rubel, E.W. J. Neurosci. (1995) [Pubmed]
  12. Inositol 1,4,5-trisphosphate receptors: immunocytochemical localization in the dorsal cochlear nucleus. Ryugo, D.K., Pongstaporn, T., Wright, D.D., Sharp, A.H. J. Comp. Neurol. (1995) [Pubmed]
  13. Kinetic analysis of glycine receptor currents in ventral cochlear nucleus. Harty, T.P., Manis, P.B. J. Neurophysiol. (1998) [Pubmed]
  14. Developmental changes in metabotropic glutamate receptor-mediated calcium homeostasis. Zirpel, L., Janowiak, M.A., Taylor, D.A., Parks, T.N. J. Comp. Neurol. (2000) [Pubmed]
  15. Quantitative changes in calretinin immunostaining in the cochlear nuclei after unilateral cochlear removal in young ferrets. Fuentes-Santamaria, V., Alvarado, J.C., Taylor, A.R., Brunso-Bechtold, J.K., Henkel, C.K. J. Comp. Neurol. (2005) [Pubmed]
  16. Selective labeling of spiral ganglion and granule cells with D-aspartate in the auditory system of cat and guinea pig. Oliver, D.L., Potashner, S.J., Jones, D.R., Morest, D.K. J. Neurosci. (1983) [Pubmed]
  17. GABA and its related enzymes in the lower auditory system of the guinea pig. Fisher, S.K., Davies, W.E. J. Neurochem. (1976) [Pubmed]
  18. Uptake and release of gamma-aminobutyric acid in the guinea pig cochlear nucleus after axotomy of cochlear and centrifugal fibers. Potashner, S.J., Lindberg, N., Morest, D.K. J. Neurochem. (1985) [Pubmed]
  19. Loss of GLUR2 alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptor subunit differentially affects remaining synaptic glutamate receptors in cerebellum and cochlear nuclei. Petralia, R.S., Sans, N., Wang, Y.X., Vissel, B., Chang, K., Noben-Trauth, K., Heinemann, S.F., Wenthold, R.J. Eur. J. Neurosci. (2004) [Pubmed]
  20. Distribution and origin of serotoninergic afferents to guinea pig cochlear nucleus. Thompson, A.M., Moore, K.R., Thompson, G.C. J. Comp. Neurol. (1995) [Pubmed]
  21. Neuronal nitric oxide synthase alternatively spliced forms: prominent functional localizations in the brain. Eliasson, M.J., Blackshaw, S., Schell, M.J., Snyder, S.H. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  22. Inhibitory circuitry in the ventral cochlear nucleus is probably mediated by glycine. Wu, S.H., Oertel, D. J. Neurosci. (1986) [Pubmed]
  23. Endbulb synapses in the anteroventral cochlear nucleus express a specific subset of AMPA-type glutamate receptor subunits. Wang, Y.X., Wenthold, R.J., Ottersen, O.P., Petralia, R.S. J. Neurosci. (1998) [Pubmed]
  24. Noradrenaline enhances temporal auditory contrast and neuronal timing precision in the cochlear nucleus of the mustached bat. Kössl, M., Vater, M. J. Neurosci. (1989) [Pubmed]
  25. Expression of AMPA-selective glutamate receptor subunits in morphologically defined neurons of the mammalian cochlear nucleus. Hunter, C., Petralia, R.S., Vu, T., Wenthold, R.J. J. Neurosci. (1993) [Pubmed]
  26. Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. Laflamme, N., Rivest, S. FASEB J. (2001) [Pubmed]
  27. Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats. Lohmann, C., Friauf, E. J. Comp. Neurol. (1996) [Pubmed]
  28. Development of brain-derived neurotrophic factor and neurotrophin-3 immunoreactivity in the lower auditory brainstem of the postnatal gerbil. Tierney, T.S., P Doubell, T., Xia, G., Moore, D.R. Eur. J. Neurosci. (2001) [Pubmed]
  29. Distribution of BDNF, NT-3 and NT-4 in the developing auditory brainstem. Hafidi, A. Int. J. Dev. Neurosci. (1999) [Pubmed]
  30. Uptake and release of glycine in the guinea pig cochlear nucleus after axotomy of afferent or centrifugal fibers. Staatz-Benson, C., Potashner, S.J. J. Neurochem. (1988) [Pubmed]
  31. Ionic mechanism of the efferent olivo-cochlear inhibition studied by cochlear perfusion in the cat. Desmedt, J.E., Robertson, D. J. Physiol. (Lond.) (1975) [Pubmed]
  32. Quantitative autoradiography of 5-[3H]6-cyano-7-nitro-quinoxaline-2,3-dione and (+)-3-[3H]dizocilpine maleate binding in rat vestibular nuclear complex after unilateral deafferentation, with comparison to cochlear nucleus. Li, H., Godfrey, D.A., Rubin, A.M. Neuroscience (1997) [Pubmed]
  33. Fine structure of degeneration in the cochlear nucleus of the chinchilla after acoustic overstimulation. Kim, J.J., Gross, J., Potashner, S.J., Morest, D.K. J. Neurosci. Res. (2004) [Pubmed]
 
WikiGenes - Universities