The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Globus Pallidus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Globus Pallidus


Psychiatry related information on Globus Pallidus


High impact information on Globus Pallidus


Chemical compound and disease context of Globus Pallidus


Biological context of Globus Pallidus


Anatomical context of Globus Pallidus


Associations of Globus Pallidus with chemical compounds

  • Intrastriatal infusion of the c-fos antisense oligonucleotide profoundly decreased dialysate GABA levels in the ipsilateral substantia nigra within 60 min but did not influence the dialysate GABA levels in the globus pallidus compared with the sham and control oligonucleotide treated groups [31].
  • These findings are consistent with increased inhibitory output from the internal segment of the globus pallidus to thalamus after levodopa administration [32].
  • In rats, chronic treatment with lithium elicits a dose-dependent increase in the [Met5]enkephalin content of nucleus caudatus and globus pallidus [33].
  • There is no known glutamatergic innervation of globus pallidus (GP) in adult mammals, but we report that during postnatal development of the GP there are large, transient increases in both presynaptic high-affinity glutamate uptake and postsynaptic Na+-independent glutamate receptor binding [34].
  • Glucose utilization was increased in the ipsilateral globus pallidus at 11, 21, 53, and 104 days after substantia nigra lesion with the largest increase (about 140% of control) occurring at 21 days post-lesion [35].

Gene context of Globus Pallidus

  • The patients had neuroradiological evidence of discrete lesions restricted to the globus pallidus, and both are homozygous for different mutations in the DLAT gene [36].
  • These observations suggest that the upregulated expression of BDNF may occur as a protective mechanism in the striatum of MSA patients, and that severe striatal degeneration may cause the aberrant accumulation of BDNF in the striatal projection areas of the globus pallidus of MSA patients [37].
  • Complexed hCRF levels were significantly decreased in BA 8/BA 9, BA 22, BA 39, nucleus basalis, and globus pallidus in the Alzheimer's group and free hCRF levels were significantly decreased only in three brain areas, BA 4, BA 39, and caudate; substantial (40%) but nonsignificant decreases were also noted in BA 8/BA 9 and BA 22 [38].
  • On film autoradiograms, the signal for NR1, NR2B, and NR2C in the striatum (STR) was higher than in globus pallidus (GP) [39].
  • In addition, there was extensive PRL-R immunoreactivity throughout the globus pallidus and ventral pallidum [40].

Analytical, diagnostic and therapeutic context of Globus Pallidus


  1. Dopamine-dependent neurodegeneration in rats induced by viral vector-mediated overexpression of the parkin target protein, CDCrel-1. Dong, Z., Ferger, B., Paterna, J.C., Vogel, D., Furler, S., Osinde, M., Feldon, J., Büeler, H. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  2. Internal globus pallidus discharge is nearly suppressed during levodopa-induced dyskinesias. Papa, S.M., Desimone, R., Fiorani, M., Oldfield, E.H. Ann. Neurol. (1999) [Pubmed]
  3. Brain indoles in human hepatic encephalopathy. al Mardini, H., Harrison, E.J., Ince, P.G., Bartlett, K., Record, C.O. Hepatology (1993) [Pubmed]
  4. Hallervorden-Spatz disease: cysteine accumulation and cysteine dioxygenase deficiency in the globus pallidus. Perry, T.L., Norman, M.G., Yong, V.W., Whiting, S., Crichton, J.U., Hansen, S., Kish, S.J. Ann. Neurol. (1985) [Pubmed]
  5. Pallidal stimulation improves pantothenate kinase-associated neurodegeneration. Castelnau, P., Cif, L., Valente, E.M., Vayssiere, N., Hemm, S., Gannau, A., Digiorgio, A., Coubes, P. Ann. Neurol. (2005) [Pubmed]
  6. Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington's disease. de la Monte, S.M., Vonsattel, J.P., Richardson, E.P. J. Neuropathol. Exp. Neurol. (1988) [Pubmed]
  7. Selective alterations in cerebral metabolism within the mesocorticolimbic dopaminergic system produced by acute cocaine administration in rats. Porrino, L.J., Domer, F.R., Crane, A.M., Sokoloff, L. Neuropsychopharmacology (1988) [Pubmed]
  8. Relationship between cerebral perfusion in frontal-limbic-basal ganglia circuits and neuropsychologic impairment in patients with subclinical hepatic encephalopathy. Catafau, A.M., Kulisevsky, J., Bernà, L., Pujol, J., Martin, J.C., Otermin, P., Balanzó, J., Carrió, I. J. Nucl. Med. (2000) [Pubmed]
  9. Influence of globus pallidus on arm movements in monkeys. II. Effects of stimulation. Horak, F.B., Anderson, M.E. J. Neurophysiol. (1984) [Pubmed]
  10. Local administration of dopaminergic drugs into the ventral tegmental area modulates cataplexy in the narcoleptic canine. Reid, M.S., Tafti, M., Nishino, S., Sampathkumaran, R., Siegel, J.M., Mignot, E. Brain Res. (1996) [Pubmed]
  11. Brain neurotransmitters in dystonia musculorum deformans. Hornykiewicz, O., Kish, S.J., Becker, L.E., Farley, I., Shannak, K. N. Engl. J. Med. (1986) [Pubmed]
  12. Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington's disease. Emerich, D.F., Winn, S.R., Hantraye, P.M., Peschanski, M., Chen, E.Y., Chu, Y., McDermott, P., Baetge, E.E., Kordower, J.H. Nature (1997) [Pubmed]
  13. Functional recovery in parkinsonian monkeys treated with GDNF. Gash, D.M., Zhang, Z., Ovadia, A., Cass, W.A., Yi, A., Simmerman, L., Russell, D., Martin, D., Lapchak, P.A., Collins, F., Hoffer, B.J., Gerhardt, G.A. Nature (1996) [Pubmed]
  14. Substance P raises neuronal membrane excitability by reducing inward rectification. Stanfield, P.R., Nakajima, Y., Yamaguchi, K. Nature (1985) [Pubmed]
  15. Expression of c-fos protein in brain: metabolic mapping at the cellular level. Sagar, S.M., Sharp, F.R., Curran, T. Science (1988) [Pubmed]
  16. Striosomal organization of substance P-like immunoreactivity in parkinsonian patients. Sakamoto, S., Goto, S., Ito, H., Hirano, A. Neurology (1992) [Pubmed]
  17. Experimental tardive dyskinesia. Gunne, L.M., Häggström, J.E. The Journal of clinical psychiatry. (1985) [Pubmed]
  18. Manganese deposition in the globus pallidus in patients with biliary atresia. Ikeda, S., Yamaguchi, Y., Sera, Y., Ohshiro, H., Uchino, S., Yamashita, Y., Ogawa, M. Transplantation (2000) [Pubmed]
  19. A pure parkinsonian syndrome following acute carbon monoxide intoxication. Klawans, H.L., Stein, R.W., Tanner, C.M., Goetz, C.G. Arch. Neurol. (1982) [Pubmed]
  20. The effects of globus pallidus lesions on dopamine-dependent motor behaviour in rats. Hauber, W., Lutz, S., Münkle, M. Neuroscience (1998) [Pubmed]
  21. Plasticity of the nigropallidal pathway in Parkinson's disease. Whone, A.L., Moore, R.Y., Piccini, P.P., Brooks, D.J. Ann. Neurol. (2003) [Pubmed]
  22. Determining the oxidation states of manganese in PC12 and nerve growth factor-induced PC12 cells. Gunter, K.K., Aschner, M., Miller, L.M., Eliseev, R., Salter, J., Anderson, K., Hammond, S., Gunter, T.E. Free Radic. Biol. Med. (2005) [Pubmed]
  23. Characterization of aminopeptidases responsible for inactivating endogenous (Met5)enkephalin in brain slices using peptidase inhibitors and anti-aminopeptidase M antibodies. Giros, B., Gros, C., Solhonne, B., Schwartz, J.C. Mol. Pharmacol. (1986) [Pubmed]
  24. GluR1 glutamate receptor subunit is regulated differentially in the primate basal ganglia following nigrostriatal dopamine denervation. Betarbet, R., Porter, R.H., Greenamyre, J.T. J. Neurochem. (2000) [Pubmed]
  25. Glutamate receptor binding sites in MPTP-treated mice. Wüllner, U., Brouillet, E., Isacson, O., Young, A.B., Penney, J.B. Exp. Neurol. (1993) [Pubmed]
  26. Localization of nigral dopamine-sensitive adenylate cyclase on neurons originating from the corpus striatum. Spano, P.F., Trabucchi, M., Di Chiara, G. Science (1977) [Pubmed]
  27. Evidence for a cholinergic projection to neocortex from neurons in basal forebrain. Johnston, M.V., McKinney, M., Coyle, J.T. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  28. D1 and D2 dopamine receptor mRNA in rat brain. Weiner, D.M., Levey, A.I., Sunahara, R.K., Niznik, H.B., O'Dowd, B.F., Seeman, P., Brann, M.R. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  29. Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia. Kuo, Y.M., Duncan, J.L., Westaway, S.K., Yang, H., Nune, G., Xu, E.Y., Hayflick, S.J., Gitschier, J. Hum. Mol. Genet. (2005) [Pubmed]
  30. Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. Kawaguchi, Y., Wilson, C.J., Emson, P.C. J. Neurosci. (1990) [Pubmed]
  31. Intrastriatally injected c-fos antisense oligonucleotide interferes with striatonigral but not striatopallidal gamma-aminobutyric acid transmission in the conscious rat. Sommer, W., Rimondini, R., O'Connor, W., Hansson, A.C., Ungerstedt, U., Fuxe, K. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  32. Altered thalamic response to levodopa in Parkinson's patients with dopa-induced dyskinesias. Hershey, T., Black, K.J., Stambuk, M.K., Carl, J.L., McGee-Minnich, L.A., Perlmutter, J.S. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  33. [Met5]Enkephalin content in brain regions of rats treated with lithium. Gillin, J.C., Hong, J.S., Yang, H.Y., Costa, E. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  34. Evidence for transient perinatal glutamatergic innervation of globus pallidus. Greenamyre, T., Penney, J.B., Young, A.B., Hudson, C., Silverstein, F.S., Johnston, M.V. J. Neurosci. (1987) [Pubmed]
  35. Metabolic effects of unilateral lesion of the substantia nigra. Wooten, G.F., Collins, R.C. J. Neurosci. (1981) [Pubmed]
  36. Clinical and genetic spectrum of pyruvate dehydrogenase deficiency: dihydrolipoamide acetyltransferase (E2) deficiency. Head, R.A., Brown, R.M., Zolkipli, Z., Shahdadpuri, R., King, M.D., Clayton, P.T., Brown, G.K. Ann. Neurol. (2005) [Pubmed]
  37. Increased brain-derived neurotrophic factor-containing axons in the basal ganglia of patients with multiple system atrophy. Kawamoto, Y., Nakamura, S., Akiguchi, I., Kimura, J. J. Neuropathol. Exp. Neurol. (1999) [Pubmed]
  38. Corticotropin-releasing factor (CRF), CRF-binding protein (CRF-BP), and CRF/CRF-BP complex in Alzheimer's disease and control postmortem human brain. Behan, D.P., Khongsaly, O., Owens, M.J., Chung, H.D., Nemeroff, C.B., De Souza, E.B. J. Neurochem. (1997) [Pubmed]
  39. Expression of N-methyl-D-aspartate receptor subunit mRNAs in the human brain: striatum and globus pallidus. Kosinski, C.M., Standaert, D.G., Counihan, T.J., Scherzer, C.R., Kerner, J.A., Daggett, L.P., Veliçelebi, G., Penney, J.B., Young, A.B., Landwehrmeyer, G.B. J. Comp. Neurol. (1998) [Pubmed]
  40. Distribution of prolactin receptor immunoreactivity in the brain of estrogen-treated, ovariectomized rats. Pi, X.J., Grattan, D.R. J. Comp. Neurol. (1998) [Pubmed]
  41. Abnormal activity in the globus pallidus in off-period dystonia. Hashimoto, T., Tada, T., Nakazato, F., Maruyama, T., Katai, S., Izumi, Y., Yamada, Y., Ikeda, S. Ann. Neurol. (2001) [Pubmed]
  42. Clozapine and haloperidol have differential effects on glutamic acid decarboxylase mRNA in the pallidal nuclei of the rat. Mercugliano, M., Saller, C.F., Salama, A.I., U'Prichard, D.C., Chesselet, M.F. Neuropsychopharmacology (1992) [Pubmed]
  43. Differential regional effects of methamphetamine on the activities of tryptophan and tyrosine hydroxylase. Haughey, H.M., Fleckenstein, A.E., Hanson, G.R. J. Neurochem. (1999) [Pubmed]
  44. Induction of immediate early gene expression by high-frequency stimulation of the subthalamic nucleus in rats. Schulte, T., Brecht, S., Herdegen, T., Illert, M., Mehdorn, H.M., Hamel, W. Neuroscience (2006) [Pubmed]
WikiGenes - Universities