The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

opn1sw  -  opsin 1 (cone pigments), short-wave-sensitive

Xenopus laevis

Synonyms: opn1sw-A, opsin
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of opn1sw-A

 

High impact information on opn1sw-A

 

Biological context of opn1sw-A

  • Thus, opsin bearing abnormally large oligosaccharides can be accommodated in the process of disc morphogenesis [6].
  • By comparing the response sensitivity before stage 53 to the sensitivity at/after stage 53 measured from rods that had been subjected to various known bleaches, we estimated that 22-28% of rod opsin in stage 50-52 tadpoles (i.e., before stage 53) was devoid of chromophore despite overnight dark-adaptation [7].
  • Opsin gene expression, synthesis, and photoreceptor outer segment morphology were evaluated during retinal development in Xenopus laevis [8].
  • Melanopsin (Opn4) is a novel opsin involved in entrainment of circadian rhythms in mammals [9].
  • The long-wavelength sensitive (red) opsin genes encode proteins which play a central role in daytime and color vision in vertebrates [10].
 

Anatomical context of opn1sw-A

 

Associations of opn1sw-A with chemical compounds

  • When assays were performed with lambda > 420 nm illumination, VCOP exhibited rapid regeneration and high affinity for the photoregenerated 11-cis-retinal [15].
  • Tunicamycin (TM), a selective inhibitor of dolichylphosphate-dependent oligosaccharide biosynthesis, effectively blocks glycosylation, but not synthesis, of opsin, the rod visual pigment apoglycoprotein [16].
  • The formation of this material is apparently a consequence of a deficiency in newly synthesized, asparagine-linked membrane glycoconjugates (e.g., the oligosaccharide chains of opsin) at the site of disc assembly [17].
  • Like all visual pigments, this class has an 11-cis-retinal chromophore attached through a Schiff base linkage to a lysine residue of opsin apoprotein [18].
  • FTIR spectroscopy of violet cone opsin indicates conclusively that the chromophore is protonated [19].
 

Other interactions of opn1sw-A

  • The injected caps expressed a general neural marker NCAM and the forebrain marker opsin [20].
  • Sections of X. laevis eyes were analyzed by immunocytochemistry and confocal microscopy, in combination with antibodies against the Mel1a melatonin receptor, a rod photoreceptor-specific protein, opsin, and two amacrine cell-specific markers, tyrosine hydroxylase (TOH; dopaminergic cells) and glutamic acid decarboxylase (GAD; GABA-ergic cells) [21].
 

Analytical, diagnostic and therapeutic context of opn1sw-A

References

  1. Opsin activation as a cause of congenital night blindness. Jin, S., Cornwall, M.C., Oprian, D.D. Nat. Neurosci. (2003) [Pubmed]
  2. Xenopus laevis red cone opsin and Prph2 promoters allow transgene expression in amphibian cones, or both rods and cones. Moritz, O.L., Peck, A., Tam, B.M. Gene (2002) [Pubmed]
  3. Evidence that microtubules do not mediate opsin vesicle transport in photoreceptors. Vaughan, D.K., Fisher, S.K., Bernstein, S.A., Hale, I.L., Linberg, K.A., Matsumoto, B. J. Cell Biol. (1989) [Pubmed]
  4. Membrane morphogenesis in retinal rod outer segments: inhibition by tunicamycin. Fliesler, S.J., Rayborn, M.E., Hollyfield, J.G. J. Cell Biol. (1985) [Pubmed]
  5. Melanopsin: An opsin in melanophores, brain, and eye. Provencio, I., Jiang, G., De Grip, W.J., Hayes, W.P., Rollag, M.D. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  6. Inhibition of oligosaccharide processing and membrane morphogenesis in retinal rod photoreceptor cells. Fliesler, S.J., Rayborn, M.E., Hollyfield, J.G. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  7. Rod sensitivity during Xenopus development. Xiong, W.H., Yau, K.W. J. Gen. Physiol. (2002) [Pubmed]
  8. Photoreceptor outer segment development in Xenopus laevis: influence of the pigment epithelium. Stiemke, M.M., Landers, R.A., al-Ubaidi, M.R., Rayborn, M.E., Hollyfield, J.G. Dev. Biol. (1994) [Pubmed]
  9. Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. Chaurasia, S.S., Rollag, M.D., Jiang, G., Hayes, W.P., Haque, R., Natesan, A., Zatz, M., Tosini, G., Liu, C., Korf, H.W., Iuvone, P.M., Provencio, I. J. Neurochem. (2005) [Pubmed]
  10. Conserved cis-elements in the Xenopus red opsin promoter necessary for cone-specific expression. Babu, S., McIlvain, V., Whitaker, S.L., Knox, B.E. FEBS Lett. (2006) [Pubmed]
  11. Membrane assembly in retinal photoreceptors. II. Immunocytochemical analysis of freeze-fractured rod photoreceptor membranes using anti-opsin antibodies. Defoe, D.M., Besharse, J.C. J. Neurosci. (1985) [Pubmed]
  12. Interphotoreceptor retinoid-binding protein (IRBP), a major 124 kDa glycoprotein in the interphotoreceptor matrix of Xenopus laevis. Characterization, molecular cloning and biosynthesis. Gonzalez-Fernandez, F., Kittredge, K.L., Rayborn, M.E., Hollyfield, J.G., Landers, R.A., Saha, M., Grainger, R.M. J. Cell. Sci. (1993) [Pubmed]
  13. Vesicular transport of newly synthesized opsin from the Golgi apparatus toward the rod outer segment. Ultrastructural immunocytochemical and autoradiographic evidence in Xenopus retinas. Papermaster, D.S., Schneider, B.G., Besharse, J.C. Invest. Ophthalmol. Vis. Sci. (1985) [Pubmed]
  14. H+ -pumping rhodopsin from the marine alga Acetabularia. Tsunoda, S.P., Ewers, D., Gazzarrini, S., Moroni, A., Gradmann, D., Hegemann, P. Biophys. J. (2006) [Pubmed]
  15. Activation of transducin by a Xenopus short wavelength visual pigment. Starace, D.M., Knox, B.E. J. Biol. Chem. (1997) [Pubmed]
  16. Tunicamycin-induced dysgenesis of retinal rod outer segment membranes. II. Quantitative freeze-fracture analysis. Defoe, D.M., Besharse, J.C., Fliesler, S.J. Invest. Ophthalmol. Vis. Sci. (1986) [Pubmed]
  17. Tunicamycin-induced dysgenesis of retinal rod outer segment membranes. I. A scanning electron microscopy study. Ulshafer, R.J., Allen, C.B., Fliesler, S.J. Invest. Ophthalmol. Vis. Sci. (1986) [Pubmed]
  18. Regulation of phototransduction in short-wavelength cone visual pigments via the retinylidene Schiff base counterion. Babu, K.R., Dukkipati, A., Birge, R.R., Knox, B.E. Biochemistry (2001) [Pubmed]
  19. The photobleaching sequence of a short-wavelength visual pigment. Kusnetzow, A., Dukkipati, A., Babu, K.R., Singh, D., Vought, B.W., Knox, B.E., Birge, R.R. Biochemistry (2001) [Pubmed]
  20. A dominant negative bone morphogenetic protein 4 receptor causes neuralization in Xenopus ectoderm. Xu, R.H., Kim, J., Taira, M., Zhan, S., Sredni, D., Kung, H.F. Biochem. Biophys. Res. Commun. (1995) [Pubmed]
  21. Localization of Mel1b melatonin receptor-like immunoreactivity in ocular tissues of Xenopus laevis. Wiechmann, A.F., Udin, S.B., Summers Rada, J.A. Exp. Eye Res. (2004) [Pubmed]
  22. Early opsin expression in Xenopus embryos precedes photoreceptor differentiation. Saha, M.S., Grainger, R.M. Brain Res. Mol. Brain Res. (1993) [Pubmed]
  23. Retinoids restore normal cyclic nucleotide sensitivity of mutant ion channels associated with cone dystrophy. Tetreault, M.L., Horrigan, D.M., Kim, J.A., Zimmerman, A.L. Mol. Vis. (2006) [Pubmed]
 
WikiGenes - Universities