The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Slc13a1  -  solute carrier family 13 (sodium/sulfate...

Rattus norvegicus

Synonyms: Na(+)/sulfate cotransporter, NaSi-1, Nas1, Nasi1, Renal sodium/sulfate cotransporter, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Slc13a1


High impact information on Slc13a1

  • NaSi-1 cRNA leads in a time- and dose-dependent manner to specific stimulation of Na(+)-dependent SO4(2-) uptake in oocytes [5].
  • The apparent affinity constants of the NaSi-1 cRNA-expressed transport resemble those of Na+/SO4(2-) cotransport in brush-border membrane [5].
  • In vitro translation of NaSi-1 cRNA results in a protein of the expected size and suggests glycosylation [5].
  • NaDC-1 protein contains eight putative transmembrane domains, and the sequence and secondary structure are related to the renal Na+/sulfate transporter, NaSi-1 [6].
  • The Na+/sulfate cotransporter cloned from rat kidney cortex (NaSi-1) has been expressed in oocytes of Xenopus laevis and subjected to electrophysiological analysis by current and voltage clamp methods [7].

Biological context of Slc13a1


Anatomical context of Slc13a1

  • Northern blot analysis shows strong signals in rat lower small intestine and kidney cortex (2.9 x 10(3) and 2.3 x 10(3) bases), with the ileal NaSi-1 corresponding to the longer transcript [8].
  • For NaSi-1 protein expression, translational or posttranslational mechanisms may maintain equal numbers of sulfate proteins on proximal tubular membranes during maturation, whereas sat-1 protein levels are in close agreement with mRNA changes [12].

Associations of Slc13a1 with chemical compounds


Other interactions of Slc13a1

  • Using a rat renal Na(+)-sulphate cotransporter cDNA as a probe [NaSi-1; Markovich et al. (1993) Proc Natl Acad Sci USA 90:8073-8077], the highest hybridization signals (2.3 kb and 2.9 kb) were obtained in size fractions showing the highest expression of Na(+)-dependent sulphate transport in oocytes [15].
  • Recently, we cloned a cDNA (NaSi-1) localized to rat renal proximal tubules and encoding the brush-border membrane (BBM) Na gradient-dependent inorganic sulfate (Si) transport protein (Na-Si cotransporter) [3].
  • Sodium-dependent sulfate transporter (NaSi-1) mRNA and protein levels were significantly lower in the kidney cortex from hypothyroid rats [4].
  • At early stages of cyst development, alkaline phosphatase, aquaporin-1, NaSi-1 cotransporter, and Na(+)-K(+)-adenosinetriphosphatase (Na(+)-K(+)-ATPase) were expressed normally [16].

Analytical, diagnostic and therapeutic context of Slc13a1


  1. Sulfate homeostasis, NaSi-1 cotransporter, and SAT-1 exchanger expression in chronic renal failure in rats. Fernandes, I., Laouari, D., Tutt, P., Hampson, G., Friedlander, G., Silve, C. Kidney Int. (2001) [Pubmed]
  2. Functional expression and purification of histidine-tagged rat renal Na/Phosphate (NaPi-2) and Na/Sulfate (NaSi-1) cotransporters. Fucentese, M., Winterhalter, K.H., Murer, H., Biber, J. J. Membr. Biol. (1997) [Pubmed]
  3. Metabolic acidosis regulates rat renal Na-Si cotransport activity. Puttaparthi, K., Markovich, D., Halaihel, N., Wilson, P., Zajicek, H.K., Wang, H., Biber, J., Murer, H., Rogers, T., Levi, M. Am. J. Physiol. (1999) [Pubmed]
  4. Effect of experimentally induced hypothyroidism on sulfate renal transport in rats. Sagawa, K., Murer, H., Morris, M.E. Am. J. Physiol. (1999) [Pubmed]
  5. Expression cloning of rat renal Na+/SO4(2-) cotransport. Markovich, D., Forgo, J., Stange, G., Biber, J., Murer, H. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  6. Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter. Pajor, A.M. J. Biol. Chem. (1995) [Pubmed]
  7. Electrogenic cotransport of Na+ and sulfate in Xenopus oocytes expressing the cloned Na+SO4(2-) transport protein NaSi-1. Busch, A.E., Waldegger, S., Herzer, T., Biber, J., Markovich, D., Murer, H., Lang, F. J. Biol. Chem. (1994) [Pubmed]
  8. cDNA cloning of a rat small-intestinal Na+/SO4(2-) cotransporter. Norbis, F., Perego, C., Markovich, D., Stange, G., Verri, T., Murer, H. Pflugers Arch. (1994) [Pubmed]
  9. Glucocorticoid-induced alterations of renal sulfate transport. Sagawa, K., Darling, I.M., Murer, H., Morris, M.E. J. Pharmacol. Exp. Ther. (2000) [Pubmed]
  10. Cellular mechanisms of renal adaptation of sodium dependent sulfate cotransport to altered dietary sulfate in rats. Sagawa, K., DuBois, D.C., Almon, R.R., Murer, H., Morris, M.E. J. Pharmacol. Exp. Ther. (1998) [Pubmed]
  11. Nephron localization of Na/SO4(2-)-cotransport-related mRNA and protein. Custer, M., Murer, H., Biber, J. Pflugers Arch. (1994) [Pubmed]
  12. Ontogeny of renal sulfate transporters: postnatal mRNA and protein expression. Markovich, D., Fogelis, T.S. Pediatr. Nephrol. (1999) [Pubmed]
  13. Hormonal regulation of sodium/sulfate co-transport in renal epithelial cells. Lee, H.J., Sagawa, K., Shi, W., Murer, H., Morris, M.E. Proc. Soc. Exp. Biol. Med. (2000) [Pubmed]
  14. Immunolocalization of Na/SO4-cotransport (NaSi-1) in rat kidney. Lötscher, M., Custer, M., Quabius, E.S., Kaissling, B., Murer, H., Biber, J. Pflugers Arch. (1996) [Pubmed]
  15. Expression of rat ileal Na(+)-sulphate cotransport in Xenopus laevis oocytes: functional characterization. Perego, C., Markovich, D., Norbis, F., Verri, T., Sorribas, V., Murer, H. Pflugers Arch. (1994) [Pubmed]
  16. Differentiation and cell polarity during renal cyst formation in the Han:SPRD (cy/+) rat, a model for ADPKD. Obermüller, N., Gretz, N., Kriz, W., van der Woude, F.J., Reilly, R.F., Murer, H., Biber, J., Witzgall, R. Am. J. Physiol. (1997) [Pubmed]
  17. Dietary sulfate regulates the expression of the renal brush border Na/Si cotransporter NaSi-1. Markovich, D., Murer, H., Biber, J., Sakhaee, K., Pak, C., Levi, M. J. Am. Soc. Nephrol. (1998) [Pubmed]
  18. Ibuprofen-induced changes in sulfate renal transport. Sagawa, K., Benincosa, L.J., Murer, H., Morris, M.E. J. Pharmacol. Exp. Ther. (1998) [Pubmed]
WikiGenes - Universities