The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

poxB  -  pyruvate dehydrogenase, thiamine...

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK0862, JW0855
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of poxB

 

High impact information on poxB

  • The predicted structure has significant similarity with the dihydrolipoamide acetyltransferase (EC 2.3.1.12) of the Escherichia coli pyruvate dehydrogenase multienzyme complex [3].
  • However, direct and competitive enzyme-linked immunosorbent assays failed to implicate the coenzyme of the pyruvate dehydrogenase complex, lipoic acid or its amide, as the common antigenic moiety [4].
  • A thiamin-bound, pre-decarboxylation reaction intermediate analogue in the pyruvate dehydrogenase E1 subunit induces large scale disorder-to-order transformations in the enzyme and reveals novel structural features in the covalently bound adduct [5].
  • This pathway was tested by labeling a PDH domain with deuterated octanoate in an E. coli strain devoid of LipA activity [6].
  • Recently, one substrate for lipoyl synthase has been shown to be the octanoylated derivative of the lipoyl-bearing subunit (E(2)) of the pyruvate dehydrogenase complex [Zhao, S., Miller, J. R., Jian, Y., Marletta, M. A., and Cronan, J. E., Jr. (2003) Chem. Biol. 10, 1293-1302] [7].
 

Chemical compound and disease context of poxB

 

Biological context of poxB

  • Two of the smaller poxB plasmids were shown to cause the overproduction of oxidase activity (by six- to eightfold), and one of these plasmids was shown to encode a protein having the size and antigenic determinants of pyruvate oxidase [8].
  • It is likely that the apparent pyoverdine-deficient phenotype of mutant OT2100 is a consequence of acidification of the growth medium due to accumulation of pyruvic acid in the absence of functional PDH [11].
  • Genetic and biochemical analyses of the mutant revealed the downregulation of many TCA cycle enzymes, including citrate synthase, and the upregulation of the pyruvate dehydrogenase complex in both transcription and enzyme activities [12].
  • The results support the view that synthesis of the PDH complex is regulated from the pdhR promoter of a pdhR-aceEF-lpd operon [13].
  • Active-site changes in the pyruvate dehydrogenase multienzyme complex E1 apoenzyme component from Escherichia coli observed at 2.32 A resolution [14].
 

Anatomical context of poxB

  • These findings suggest that LIP2p is located in plastids and responsible for lipoylation of the plastidial PDH complex [15].
 

Associations of poxB with chemical compounds

 

Physical interactions of poxB

 

Other interactions of poxB

 

Analytical, diagnostic and therapeutic context of poxB

  • We report mutations generated by chemical and oligonucleotide-mediated site-directed mutagenesis of the poxB gene which result in enzymes defective in lipid activation [22].
  • Protein pull-down and bacterial two-hybrid assays followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrospray ionization-tandem mass spectrometry analyses showed the pyruvate dehydrogenase (PDH) E1 subunit as a component interacting with the pirin(Sm) gene [23].
  • Structure, expression, and protein engineering of the pyruvate dehydrogenase complex of Escherichia coli [24].

References

  1. Characterization of poxB, a chromosomal-encoded Pseudomonas aeruginosa oxacillinase. Kong, K.F., Jayawardena, S.R., Del Puerto, A., Wiehlmann, L., Laabs, U., Tümmler, B., Mathee, K. Gene (2005) [Pubmed]
  2. Serum reactivity against bacterial pyruvate dehydrogenase: Increasing the specificity of anti-mitochondrial antibodies for the diagnosis of primary biliary cirrhosis. Miyakawa, H., Tanaka, A., Selmi, C., Hosoya, N., Mataki, N., Kikuchi, K., Kato, T., Arai, J., Goto, T., Gershwin, M.E. Clin. Dev. Immunol. (2006) [Pubmed]
  3. Primary structure of the human M2 mitochondrial autoantigen of primary biliary cirrhosis: dihydrolipoamide acetyltransferase. Coppel, R.L., McNeilage, L.J., Surh, C.D., Van de Water, J., Spithill, T.W., Whittingham, S., Gershwin, M.E. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  4. Antimitochondrial antibodies in primary biliary cirrhosis recognize both specific peptides and shared epitopes of the M2 family of antigens. Flannery, G.R., Burroughs, A.K., Butler, P., Chelliah, J., Hamilton-Miller, J., Brumfitt, W., Baum, H. Hepatology (1989) [Pubmed]
  5. A thiamin-bound, pre-decarboxylation reaction intermediate analogue in the pyruvate dehydrogenase E1 subunit induces large scale disorder-to-order transformations in the enzyme and reveals novel structural features in the covalently bound adduct. Arjunan, P., Sax, M., Brunskill, A., Chandrasekhar, K., Nemeria, N., Zhang, S., Jordan, F., Furey, W. J. Biol. Chem. (2006) [Pubmed]
  6. Assembly of the covalent linkage between lipoic acid and its cognate enzymes. Zhao, X., Miller, J.R., Jiang, Y., Marletta, M.A., Cronan, J.E. Chem. Biol. (2003) [Pubmed]
  7. Lipoyl synthase requires two equivalents of S-adenosyl-L-methionine to synthesize one equivalent of lipoic acid. Cicchillo, R.M., Iwig, D.F., Jones, A.D., Nesbitt, N.M., Baleanu-Gogonea, C., Souder, M.G., Tu, L., Booker, S.J. Biochemistry (2004) [Pubmed]
  8. Molecular cloning of the gene (poxB) encoding the pyruvate oxidase of Escherichia coli, a lipid-activated enzyme. Grabau, C., Cronan, J.E. J. Bacteriol. (1984) [Pubmed]
  9. The Escherichia coli lipB gene encodes lipoyl (octanoyl)-acyl carrier protein:protein transferase. Jordan, S.W., Cronan, J.E. J. Bacteriol. (2003) [Pubmed]
  10. Lipoic acid metabolism in Arabidopsis thaliana: cloning and characterization of a cDNA encoding lipoyltransferase. Wada, M., Yasuno, R., Jordan, S.W., Cronan, J.E., Wada, H. Plant Cell Physiol. (2001) [Pubmed]
  11. Sequences and expression of pyruvate dehydrogenase genes from Pseudomonas aeruginosa. Rae, J.L., Cutfield, J.F., Lamont, I.L. J. Bacteriol. (1997) [Pubmed]
  12. Alterations of Cellular Physiology in Escherichia coli in Response to Oxidative Phosphorylation Impaired by Defective F1-ATPase. Noda, S., Takezawa, Y., Mizutani, T., Asakura, T., Nishiumi, E., Onoe, K., Wada, M., Tomita, F., Matsushita, K., Yokota, A. J. Bacteriol. (2006) [Pubmed]
  13. A mutation causing constitutive synthesis of the pyruvate dehydrogenase complex in Escherichia coli is located within the pdhR gene. Haydon, D.J., Quail, M.A., Guest, J.R. FEBS Lett. (1993) [Pubmed]
  14. Active-site changes in the pyruvate dehydrogenase multienzyme complex E1 apoenzyme component from Escherichia coli observed at 2.32 A resolution. Chandrasekhar, K., Arjunan, P., Sax, M., Nemeria, N., Jordan, F., Furey, W. Acta Crystallogr. D Biol. Crystallogr. (2006) [Pubmed]
  15. Identification of an Arabidopsis cDNA encoding a lipoyltransferase located in plastids. Wada, M., Yasuno, R., Wada, H. FEBS Lett. (2001) [Pubmed]
  16. Homolactate Fermentation by Metabolically Engineered Escherichia coli Strains. Zhu, Y., Eiteman, M.A., Dewitt, K., Altman, E. Appl. Environ. Microbiol. (2007) [Pubmed]
  17. Indole-3-acetic acid regulates the central metabolic pathways in Escherichia coli. Bianco, C., Imperlini, E., Calogero, R., Senatore, B., Pucci, P., Defez, R. Microbiology (Reading, Engl.) (2006) [Pubmed]
  18. Specific growth inhibition by acetate of an Escherichia coli strain expressing Era-dE, a dominant negative Era mutant. Inoue, K., Chen, J., Kato, I., Inouye, M. J. Mol. Microbiol. Biotechnol. (2002) [Pubmed]
  19. Escherichia coli LipA is a lipoyl synthase: in vitro biosynthesis of lipoylated pyruvate dehydrogenase complex from octanoyl-acyl carrier protein. Miller, J.R., Busby, R.W., Jordan, S.W., Cheek, J., Henshaw, T.F., Ashley, G.W., Broderick, J.B., Cronan, J.E., Marletta, M.A. Biochemistry (2000) [Pubmed]
  20. Lipoic acid metabolism in Escherichia coli: sequencing and functional characterization of the lipA and lipB genes. Reed, K.E., Cronan, J.E. J. Bacteriol. (1993) [Pubmed]
  21. Purification and properties of the pyruvate dehydrogenase complex from Salmonella typhimurium and formation of hybrids with the enzyme complex from Escherichia coli. Seckler, R., Binder, R., Bisswanger, H. Biochim. Biophys. Acta (1982) [Pubmed]
  22. Lipid binding by Escherichia coli pyruvate oxidase is disrupted by small alterations of the carboxyl-terminal region. Grabau, C., Chang, Y.Y., Cronan, J.E. J. Biol. Chem. (1989) [Pubmed]
  23. Pirin regulates pyruvate catabolism by interacting with the pyruvate dehydrogenase e1 subunit and modulating pyruvate dehydrogenase activity. Soo, P.C., Horng, Y.T., Lai, M.J., Wei, J.R., Hsieh, S.C., Chang, Y.L., Tsai, Y.H., Lai, H.C. J. Bacteriol. (2007) [Pubmed]
  24. Structure, expression, and protein engineering of the pyruvate dehydrogenase complex of Escherichia coli. Guest, J.R., Angier, S.J., Russell, G.C. Ann. N. Y. Acad. Sci. (1989) [Pubmed]
 
WikiGenes - Universities