The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

lipoic acid     5-[3-(thiolan-3-yl)thiolan-3- yl]pentanoate

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of lipoic acid


Psychiatry related information on lipoic acid


High impact information on lipoic acid

  • Allosteric modulation of the NMDA receptor by dihydrolipoic and lipoic acid in rat cortical neurons in vitro [10].
  • In contrast, lipoic acid reversed the potentiation of NMDA-evoked responses produced by dithiothreitol and had no effect on NMDA receptors previously oxidized by DTNB [10].
  • Two previously unreported specificities in AMA-positive sera that recognize free lipoic acid and a carrier-conjugated form of lipoic acid were also identified [1].
  • The variability in the immunoreactive carrier/lipoate conjugates provides an experimental framework on which potential mechanisms for the breakdown of self-tolerance following exposure to xenobiotics can be investigated [1].
  • Immunodominant sites on pyruvate dehydrogenase E2 (autoepitopes) have been mapped and have been shown to be the site of attachment of the functionally important lipoic acid prosthetic group [11].

Chemical compound and disease context of lipoic acid


Biological context of lipoic acid

  • Structural comparison of LipB with lipoate protein ligase A indicates that, despite conserved structural and sequence active-site features in the two enzymes, 4'-phosphopantetheine-bound octanoic acid recognition is a specific property of LipB [3].
  • The amino acid sequence of the protein encoded by the cDNA was 20% identical with that encoded by the yeast PDX1 gene and 40% identical with that encoded by the lipoate acetyltransferase component of the pyruvate dehydrogenase and included a lipoyl-bearing domain that is conserved in some dehydrogenase enzyme complexes [17].
  • The slr-7 mutation, which was mapped to min 15.25 of the chromosome, completely suppressed the lipoate requirement of lipA strains and defined a gene of unknown function in the synthesis of lipoic acid [18].
  • Lipoic acid is essential for the activation of a number of protein complexes involved in key metabolic processes [3].
  • Our data indicate that the aging rat heart is under increased mitochondrial-induced oxidative stress, which is significantly attenuated by lipoic acid supplementation [19].

Anatomical context of lipoic acid

  • DHLA and lipoic acid are pervasively found substances that readily permeate cellular membranes and thus may influence NMDA receptor activity in vivo by modifying its redox site [10].
  • A major 70 kD M2 autoantigen is the E2 component (lipoate acetyltransferase) of the pyruvate dehydrogenase enzyme complex located within mitochondria [20].
  • Phylogenetic analyses reveal the secondary loss of the mitochondrial lipoate synthase gene after the acquisition of the plastid [21].
  • Our studies thus reveal an unexpected metabolic deficiency in T. gondii and raise the question whether the close interaction of host mitochondria with the parasitophorous vacuole is connected to lipoate supply by the host [21].
  • Cardiac myocytes from old, LA-supplemented rats exhibited a markedly lower rate of oxidant production that was no longer significantly different from that in cells from unsupplemented, young rats [19].

Associations of lipoic acid with other chemical compounds


Gene context of lipoic acid


Analytical, diagnostic and therapeutic context of lipoic acid


  1. Autoreactivity to lipoate and a conjugated form of lipoate in primary biliary cirrhosis. Bruggraber, S.F., Leung, P.S., Amano, K., Quan, C., Kurth, M.J., Nantz, M.H., Benson, G.D., Van de Water, J., Luketic, V., Roche, T.E., Ansari, A.A., Coppel, R.L., Gershwin, M.E. Gastroenterology (2003) [Pubmed]
  2. Repeating functional domains in the pyruvate dehydrogenase multienzyme complex of Escherichia coli. Packman, L.C., Hale, G., Perham, R.N. EMBO J. (1984) [Pubmed]
  3. The Mycobacterium tuberculosis LipB enzyme functions as a cysteine/lysine dyad acyltransferase. Ma, Q., Zhao, X., Eddine, A.N., Geerlof, A., Li, X., Cronan, J.E., Kaufmann, S.H., Wilmanns, M. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  4. Cu2+ toxicity inhibition of mitochondrial dehydrogenases in vitro and in vivo. Sheline, C.T., Choi, D.W. Ann. Neurol. (2004) [Pubmed]
  5. Lipoic acid as a novel treatment for Alzheimer's disease and related dementias. Holmquist, L., Stuchbury, G., Berbaum, K., Muscat, S., Young, S., Hager, K., Engel, J., M??nch, G. Pharmacol. Ther. (2007) [Pubmed]
  6. Dietary modulation of age-related changes in cerebral pro-oxidant status. Bondy, S.C., Yang, Y.E., Walsh, T.J., Gie, Y.W., Lahiri, D.K. Neurochem. Int. (2002) [Pubmed]
  7. Lipoic acid improves survival in transgenic mouse models of Huntington's disease. Andreassen, O.A., Ferrante, R.J., Dedeoglu, A., Beal, M.F. Neuroreport (2001) [Pubmed]
  8. (r)-, but not (s)-alpha lipoic acid stimulates deficient brain pyruvate dehydrogenase complex in vascular dementia, but not in Alzheimer dementia. Frölich, L., Götz, M.E., Weinmüller, M., Youdim, M.B., Barth, N., Dirr, A., Gsell, W., Jellinger, K., Beckmann, H., Riederer, P. Journal of neural transmission (Vienna, Austria : 1996) (2004) [Pubmed]
  9. Alpha lipoic acid for dementia. Sauer, J., Tabet, N., Howard, R. Cochrane database of systematic reviews (Online) (2004) [Pubmed]
  10. Allosteric modulation of the NMDA receptor by dihydrolipoic and lipoic acid in rat cortical neurons in vitro. Tang, L.H., Aizenman, E. Neuron (1993) [Pubmed]
  11. Primary biliary cirrhosis: paradigm or paradox for autoimmunity. Gershwin, M.E., Mackay, I.R. Gastroenterology (1991) [Pubmed]
  12. A lipoic acid-gamma linolenic acid conjugate is effective against multiple indices of experimental diabetic neuropathy. Hounsom, L., Horrobin, D.F., Tritschler, H., Corder, R., Tomlinson, D.R. Diabetologia (1998) [Pubmed]
  13. The role of lipoic acid residues in the pyruvate dehydrogenase multienzyme complex of Escherichia coli. Danson, M.J., Hale, G., Perham, R.N. Biochem. J. (1981) [Pubmed]
  14. Lipoic acid supplementation prevents angiotensin II-induced renal injury. Mervaala, E., Finckenberg, P., Lapatto, R., Müller, D.N., Park, J.K., Dechend, R., Ganten, D., Vapaatalo, H., Luft, F.C. Kidney Int. (2003) [Pubmed]
  15. Lipoylating and biotinylating enzymes contain a homologous catalytic module. Reche, P.A. Protein Sci. (2000) [Pubmed]
  16. Lipoic acid metabolism in Escherichia coli: isolation of null mutants defective in lipoic acid biosynthesis, molecular cloning and characterization of the E. coli lip locus, and identification of the lipoylated protein of the glycine cleavage system. Vanden Boom, T.J., Reed, K.E., Cronan, J.E. J. Bacteriol. (1991) [Pubmed]
  17. Mutations in PDX1, the human lipoyl-containing component X of the pyruvate dehydrogenase-complex gene on chromosome 11p1, in congenital lactic acidosis. Aral, B., Benelli, C., Ait-Ghezala, G., Amessou, M., Fouque, F., Maunoury, C., Créau, N., Kamoun, P., Marsac, C. Am. J. Hum. Genet. (1997) [Pubmed]
  18. Mutants of Escherichia coli K-12 that are resistant to a selenium analog of lipoic acid identify unknown genes in lipoate metabolism. Reed, K.E., Morris, T.W., Cronan, J.E. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  19. Oxidative stress in the aging rat heart is reversed by dietary supplementation with (R)-(alpha)-lipoic acid. Suh, J.H., Shigeno, E.T., Morrow, J.D., Cox, B., Rocha, A.E., Frei, B., Hagen, T.M. FASEB J. (2001) [Pubmed]
  20. Primary biliary cirrhosis: identification of two major M2 mitochondrial autoantigens. Yeaman, S.J., Fussey, S.P., Danner, D.J., James, O.F., Mutimer, D.J., Bassendine, M.F. Lancet (1988) [Pubmed]
  21. Toxoplasma gondii scavenges host-derived lipoic acid despite its de novo synthesis in the apicoplast. Crawford, M.J., Thomsen-Zieger, N., Ray, M., Schachtner, J., Roos, D.S., Seeber, F. EMBO J. (2006) [Pubmed]
  22. Synthesis and characterization of selenotrisulfide-derivatives of lipoic acid and lipoamide. Self, W.T., Tsai, L., Stadtman, T.C. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  23. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Suh, J.H., Shenvi, S.V., Dixon, B.M., Liu, H., Jaiswal, A.K., Liu, R.M., Hagen, T.M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  24. X-ray structure determination at 2.6-A resolution of a lipoate-containing protein: the H-protein of the glycine decarboxylase complex from pea leaves. Pares, S., Cohen-Addad, C., Sieker, L., Neuburger, M., Douce, R. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  25. Regulation of pyruvate dehydrogenase kinase activity by protein thiol-disulfide exchange. Pettit, F.H., Humphreys, J., Reed, L.J. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  26. Site-directed mutagenesis of lysine within the immunodominant autoepitope of PDC-E2. Leung, P.S., Iwayama, T., Coppel, R.L., Gershwin, M.E. Hepatology (1990) [Pubmed]
  27. Isolation and characterization of LIP5. A lipoate biosynthetic locus of Saccharomyces cerevisiae. Sulo, P., Martin, N.C. J. Biol. Chem. (1993) [Pubmed]
  28. A novel phosphopantetheine:protein transferase activating yeast mitochondrial acyl carrier protein. Stuible, H.P., Meier, S., Wagner, C., Hannappel, E., Schweizer, E. J. Biol. Chem. (1998) [Pubmed]
  29. Facilitated interaction between the pyruvate dehydrogenase kinase isoform 2 and the dihydrolipoyl acetyltransferase. Hiromasa, Y., Roche, T.E. J. Biol. Chem. (2003) [Pubmed]
  30. IRS1 degradation and increased serine phosphorylation cannot predict the degree of metabolic insulin resistance induced by oxidative stress. Potashnik, R., Bloch-Damti, A., Bashan, N., Rudich, A. Diabetologia (2003) [Pubmed]
  31. Antimitochondrial antibodies in primary biliary cirrhosis recognize both specific peptides and shared epitopes of the M2 family of antigens. Flannery, G.R., Burroughs, A.K., Butler, P., Chelliah, J., Hamilton-Miller, J., Brumfitt, W., Baum, H. Hepatology (1989) [Pubmed]
  32. Characterization of the autoantibody responses to recombinant E3 binding protein (protein X) of pyruvate dehydrogenase in primary biliary cirrhosis. Palmer, J.M., Jones, D.E., Quinn, J., McHugh, A., Yeaman, S.J. Hepatology (1999) [Pubmed]
  33. A lipoyl synthetic octadecapeptide of dihydrolipoamide acetyltransferase specifically recognized by anti-M2 autoantibodies in primary biliary cirrhosis. Tuaillon, N., Andre, C., Briand, J.P., Penner, E., Muller, S. J. Immunol. (1992) [Pubmed]
  34. Primary biliary cirrhosis. Inhibition of pyruvate dehydrogenase complex activity by autoantibodies specific for E1 alpha, a non-lipoic acid containing mitochondrial enzyme. Fregeau, D.R., Roche, T.E., Davis, P.A., Coppel, R., Gershwin, M.E. J. Immunol. (1990) [Pubmed]
  35. The human malaria parasite Plasmodium falciparum has distinct organelle-specific lipoylation pathways. Wrenger, C., Müller, S. Mol. Microbiol. (2004) [Pubmed]
WikiGenes - Universities