The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Communicable Disease Control

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Communicable Disease Control


High impact information on Communicable Disease Control

  • Susceptible BALB/c mice aberrantly develop Th2 cells in response to infection and are unable to control parasite dissemination [6].
  • Mice that produced low amounts of MSP1-15 stimulated IFN-gamma and could not control parasite infection [7].
  • Finally, IL-12 is required to sustain Th1 cells and control parasite growth in susceptible and resistant strains of mice during primary and secondary infection [8].
  • Although Stat1-/- mice produced normal serum levels of IL-12 and IFN-gamma, these mice were unable to control parasite replication and rapidly succumbed to this infection [9].
  • Here we report that mice lacking the p75 receptor (TNFRp75-/-) or both receptors (TNFRp55p75-/-), also control parasite replication, albeit mice lacking the p55 receptor (either TNFRp55-/- or TNFRp55p75-/-) are delayed in their elimination of L. major compared with controls [10].

Biological context of Communicable Disease Control


Anatomical context of Communicable Disease Control


Associations of Communicable Disease Control with chemical compounds


Gene context of Communicable Disease Control

  • These results suggest that, in male mice, a rapid response to infection with high levels of TNF-alpha and IFN-gamma helps to control parasite multiplication, after which IL-10 production may be important in down regulating these potentially harmful inflammatory mediators [24].
  • Nevertheless, in both the acute and chronic stages, IFN-gamma-dependent but iNOS-independent mechanism(s) play a major function in parasite control and their identification remains an important challenge for this field [25].
  • CCL5 is part of the cascade of events leading to efficient parasite control in L. major infection [26].
  • Our data indicate that endothelin ET(A) receptors contribute to the initial mechanisms of parasite control [27].
  • The signal was present in the draining popliteal lymph nodes of both hosts, however, only susceptible mice known to be unable to control parasite dissemination showed induction of HDC in their distant periaortic lymph nodes as well [28].


  1. Distinct roles for lymphotoxin-alpha and tumor necrosis factor in the control of Leishmania donovani infection. Engwerda, C.R., Ato, M., Stäger, S., Alexander, C.E., Stanley, A.C., Kaye, P.M. Am. J. Pathol. (2004) [Pubmed]
  2. Interleukin-10 (IL-10) counterregulates IL-4-dependent effector mechanisms in Murine Filariasis. Specht, S., Volkmann, L., Wynn, T., Hoerauf, A. Infect. Immun. (2004) [Pubmed]
  3. Therapeutic and protective efficacy of doramectin injectable against gastrointestinal nematodes in cattle in New Zealand: a comparison with moxidectin and ivermectin pour-on formulations. Hooke, F.G., Clement, P., Dell'Osa, D., Porter, R.M., MacColl, D., Rew, R.S. Vet. Parasitol. (1997) [Pubmed]
  4. Trypanosoma cruzi-infected cardiomyocytes produce chemokines and cytokines that trigger potent nitric oxide-dependent trypanocidal activity. Machado, F.S., Martins, G.A., Aliberti, J.C., Mestriner, F.L., Cunha, F.Q., Silva, J.S. Circulation (2000) [Pubmed]
  5. A role for TNF during African trypanosomiasis: involvement in parasite control, immunosuppression and pathology. Lucas, R., Magez, S., Songa, B., Darji, A., Hamers, R., de Baetselier, P. Res. Immunol. (1993) [Pubmed]
  6. Altered ligands reveal limited plasticity in the T cell response to a pathogenic epitope. Pingel, S., Launois, P., Fowell, D.J., Turck, C.W., Southwood, S., Sette, A., Glaichenhaus, N., Louis, J.A., Locksley, R.M. J. Exp. Med. (1999) [Pubmed]
  7. Recombinant Mycobacterium bovis bacillus Calmette-Guérin secreting merozoite surface protein 1 (MSP1) induces protection against rodent malaria parasite infection depending on MSP1-stimulated interferon gamma and parasite-specific antibodies. Matsumoto, S., Yukitake, H., Kanbara, H., Yamada, T. J. Exp. Med. (1998) [Pubmed]
  8. The role of antigen and IL-12 in sustaining Th1 memory cells in vivo: IL-12 is required to maintain memory/effector Th1 cells sufficient to mediate protection to an infectious parasite challenge. Stobie, L., Gurunathan, S., Prussin, C., Sacks, D.L., Glaichenhaus, N., Wu, C.Y., Seder, R.A. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  9. STAT1 plays a critical role in the regulation of antimicrobial effector mechanisms, but not in the development of Th1-type responses during toxoplasmosis. Lieberman, L.A., Banica, M., Reiner, S.L., Hunter, C.A. J. Immunol. (2004) [Pubmed]
  10. Control of Leishmania major infection in mice lacking TNF receptors. Nashleanas, M., Kanaly, S., Scott, P. J. Immunol. (1998) [Pubmed]
  11. Role of peroxynitrite in macrophage microbicidal mechanisms in vivo revealed by protein nitration and hydroxylation. Linares, E., Giorgio, S., Mortara, R.A., Santos, C.X., Yamada, A.T., Augusto, O. Free Radic. Biol. Med. (2001) [Pubmed]
  12. Comparative hepatic and extrahepatic enantioselective sulfoxidation of albendazole and fenbendazole in sheep and cattle. Virkel, G., Lifschitz, A., Sallovitz, J., Pis, A., Lanusse, C. Drug Metab. Dispos. (2004) [Pubmed]
  13. Comparative disposition kinetics of albendazole in sheep following oral and intraruminal administration. Swarnkar, C.P., Sanyal, P.K., Singh, D., Khan, F.A., Bhagwan, P.S. Vet. Res. Commun. (1998) [Pubmed]
  14. Molecular characterization of an acetylcholinesterase implicated in the regulation of glucose scavenging by the parasite Schistosoma. Jones, A.K., Bentley, G.N., Oliveros Parra, W.G., Agnew, A. FASEB J. (2002) [Pubmed]
  15. The CD40/CD40 ligand interaction is required for resistance to toxoplasmic encephalitis. Reichmann, G., Walker, W., Villegas, E.N., Craig, L., Cai, G., Alexander, J., Hunter, C.A. Infect. Immun. (2000) [Pubmed]
  16. Immune response induced by New World Leishmania species in C57BL/6 mice. Maioli, T.U., Takane, E., Arantes, R.M., Fietto, J.L., Afonso, L.C. Parasitol. Res. (2004) [Pubmed]
  17. Ex vivo and in vitro impairment of CD36 expression and tumor necrosis factor-alpha production in human monocytes in response to Plasmodium falciparum-parasitized erythrocytes. Berry, A., Chene, G., Benoit-Vical, F., Lepert, J.C., Bernad, J., Marchou, B., Séguéla, J.P., Magnaval, J.F., Pipy, B. J. Parasitol. (2005) [Pubmed]
  18. Toxoplasma gondii: evidence for interleukin-12-dependent and-independent pathways of interferon-gamma production induced by an attenuated parasite strain. Scharton-Kersten, T., Caspar, P., Sher, A., Denkers, E.Y. Exp. Parasitol. (1996) [Pubmed]
  19. Haemonchus contortus: the uptake and metabolism of closantel. Rothwell, J., Sangster, N. Int. J. Parasitol. (1997) [Pubmed]
  20. Equine parasite control using pyrantel embonate. Clayton, H.M., Duncan, J.L., Gilbert, G.A. Vet. Rec. (1979) [Pubmed]
  21. Evaluation of gastro-intestinal nematode parasite control strategies for first-season grazing cattle in Sweden. Dimander, S.O., Höglund, J., Uggla, A., Spörndly, E., Waller, P.J. Vet. Parasitol. (2003) [Pubmed]
  22. A putative role for larval nematode infection in diarrhoeas of lambs which did not respond to anthelmintic drenches. Suttle, N., Brebner, J. Vet. Rec. (1995) [Pubmed]
  23. Cambendazole for strongyle control in a pony band: selection of a drug-resistant population of small strongyles and teratologic implications. Drudge, J.H., Lyons, E.T., Swerczek, T.W., Tolliver, S.C. Am. J. Vet. Res. (1983) [Pubmed]
  24. Sex-determined resistance to Toxoplasma gondii is associated with temporal differences in cytokine production. Roberts, C.W., Cruickshank, S.M., Alexander, J. Infect. Immun. (1995) [Pubmed]
  25. Cell-mediated immunity to Toxoplasma gondii: initiation, regulation and effector function. Yap, G.S., Sher, A. Immunobiology (1999) [Pubmed]
  26. Involvement of the chemokine RANTES (CCL5) in resistance to experimental infection with Leishmania major. Santiago, H.d.a. .C., Oliveira, C.F., Santiago, L., Ferraz, F.O., de Souza, D.d.a. .G., de-Freitas, L.A., Afonso, L.C., Teixeira, M.M., Gazzinelli, R.T., Vieira, L.Q. Infect. Immun. (2004) [Pubmed]
  27. Protective role of ETA endothelin receptors during the acute phase of Trypanosoma cruzi infection in rats. Camargos, E.R., Rocha, L.L., Rachid, M.A., Almeida, A.P., Ferreira, A.J., Teixeira, A.L., Chiari, E., Barton, M., Teixeira, M.M., Machado, C.R. Microbes Infect. (2004) [Pubmed]
  28. Different patterns of the L-histidine decarboxylase (HDC) gene expression in mice resistant and susceptible to experimental cutaneous leishmaniasis. Pós, Z., Müller, K., Novalphak, I., Buzás, E., Solbach, W., Falus, A., Laskay, T. Inflamm. Res. (2004) [Pubmed]
WikiGenes - Universities