The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Caulobacter

  • The regulatory circuitry controlling expression of the polar flagellar genes of members of the Vibrionaceae is different from the peritrichous system of enteric bacteria or the polar system of Caulobacter crescentus [1].
  • We demonstrate here that the expression of the Escherichia coli chemoreceptor gene tsr, with 2.6 kilobases of its upstream sequence, is temporally controlled in Caulobacter crescentus [2].
  • Two members of this group, DR1885 from Deinococcus radiodurans and CC3502 from Caulobacter crescentus, were expressed, and their interaction with copper was investigated [3].
  • The nucleotide sequence of the gene, called flbA, predicted a protein of 78,864 Da, with significant homology to a group of related proteins including the Yersinia pestis LcrD, Salmonella typhimurium InvA, and Caulobacter crescentus FlbF proteins [4].
  • The high degree of sequence homology of proteins derived from widely differing organisms, including Caulobacter and Yersinia species, suggests that FlbF and LcrD may be representatives of a larger family of regulatory proteins with a common sensor mechanism for modifying responses to appropriate stimuli [5].

High impact information on Caulobacter


Chemical compound and disease context of Caulobacter


Biological context of Caulobacter

  • The kinetic properties of an adenine DNA methyltransferase involved in cell cycle regulation of Caulobacter crescentus have been elucidated by using defined unmethylated or hemimethylated DNA (DNAHM) substrates [16].
  • Thus, we propose that the Caulobacter chromosomal origins have specific cellular addresses and that the SMC protein plays important roles in maintaining chromosome structure and in partitioning [17].
  • The most recently discovered example is a remarkable histidine kinase that oscillates between polar and global distributions while temporally regulating transcription and DNA replication in Caulobacter [18].
  • Caulobacter crescentus pilin. Purification, chemical characterization, and NH2-terminal amino acid sequence of a structural protein regulated during development [19].
  • Cells lacking ClpB display a prolonged shutoff phase of the heat shock response in Caulobacter crescentus [20].

Anatomical context of Caulobacter


Gene context of Caulobacter


Analytical, diagnostic and therapeutic context of Caulobacter

  • High-pressure liquid chromatography of a muramidase digest of murein sacculi from Caulobacter crescentus showed that the absence of D-alanine carboxypeptidase activity in the cells was reflected by a very high content of pentapeptide in the murein [29].


  1. Polar flagellar motility of the Vibrionaceae. McCarter, L.L. Microbiol. Mol. Biol. Rev. (2001) [Pubmed]
  2. An Escherichia coli chemoreceptor gene is temporally controlled in Caulobacter. Frederikse, P.H., Shapiro, L. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  3. A copper(I) protein possibly involved in the assembly of CuA center of bacterial cytochrome c oxidase. Banci, L., Bertini, I., Ciofi-Baffoni, S., Katsari, E., Katsaros, N., Kubicek, K., Mangani, S. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  4. A Campylobacter jejuni homolog of the LcrD/FlbF family of proteins is necessary for flagellar biogenesis. Miller, S., Pesci, E.C., Pickett, C.L. Infect. Immun. (1993) [Pubmed]
  5. The cell cycle-regulated flagellar gene flbF of Caulobacter crescentus is homologous to a virulence locus (lcrD) of Yersinia pestis. Ramakrishnan, G., Zhao, J.L., Newton, A. J. Bacteriol. (1991) [Pubmed]
  6. Cell cycle control by an essential bacterial two-component signal transduction protein. Quon, K.C., Marczynski, G.T., Shapiro, L. Cell (1996) [Pubmed]
  7. Caulobacter Lon protease has a critical role in cell-cycle control of DNA methylation. Wright, R., Stephens, C., Zweiger, G., Shapiro, L., Alley, M.R. Genes Dev. (1996) [Pubmed]
  8. A temporally controlled sigma-factor is required for polar morphogenesis and normal cell division in Caulobacter. Brun, Y.V., Shapiro, L. Genes Dev. (1992) [Pubmed]
  9. Control of synthesis and positioning of a Caulobacter crescentus flagellar protein. Loewy, Z.G., Bryan, R.A., Reuter, S.H., Shapiro, L. Genes Dev. (1987) [Pubmed]
  10. DnaA couples DNA replication and the expression of two cell cycle master regulators. Collier, J., Murray, S.R., Shapiro, L. EMBO J. (2006) [Pubmed]
  11. Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. Deich, J., Judd, E.M., McAdams, H.H., Moerner, W.E. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  12. A novel bacterial tyrosine kinase essential for cell division and differentiation. Wu, J., Ohta, N., Zhao, J.L., Newton, A. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  13. Effect of 3':5'-cyclic GMP derivatives on the formation of Caulobacter surface structures. Kurn, N., Shapiro, L. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  14. Caulobacter crescentus nucleoid: analysis of sedimentation behavior and protein composition during the cell cycle. Evinger, M., Agabian, N. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  15. A specific cyclic guanosine 3':5'-monophosphate-binding protein in Caulobacter crescentus. Sun, I.Y., Shapiro, L., Rosen, O.M. J. Biol. Chem. (1975) [Pubmed]
  16. A cell cycle-regulated adenine DNA methyltransferase from Caulobacter crescentus processively methylates GANTC sites on hemimethylated DNA. Berdis, A.J., Lee, I., Coward, J.K., Stephens, C., Wright, R., Shapiro, L., Benkovic, S.J. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  17. The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation. Jensen, R.B., Shapiro, L. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  18. Bacterial cells: The migrating kinase and the master regulator. Stephens, C. Curr. Biol. (1999) [Pubmed]
  19. Caulobacter crescentus pilin. Purification, chemical characterization, and NH2-terminal amino acid sequence of a structural protein regulated during development. Smit, J., Hermodson, M., Agabian, N. J. Biol. Chem. (1981) [Pubmed]
  20. Cells lacking ClpB display a prolonged shutoff phase of the heat shock response in Caulobacter crescentus. Simão, R.C., Susin, M.F., Alvarez-Martinez, C.E., Gomes, S.L. Mol. Microbiol. (2005) [Pubmed]
  21. A histidine protein kinase is involved in polar organelle development in Caulobacter crescentus. Wang, S.P., Sharma, P.L., Schoenlein, P.V., Ely, B. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  22. Molecular genetics of the flgI region and its role in flagellum biosynthesis in Caulobacter crescentus. Khambaty, F.M., Ely, B. J. Bacteriol. (1992) [Pubmed]
  23. Cloning and analysis of sodC, encoding the copper-zinc superoxide dismutase of Escherichia coli. Imlay, K.R., Imlay, J.A. J. Bacteriol. (1996) [Pubmed]
  24. Localization of proteins in the inner and outer membranes of Caulobacter crescentus. Clancy, M.J., Newton, A. Biochim. Biophys. Acta (1982) [Pubmed]
  25. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. Christen, M., Christen, B., Folcher, M., Schauerte, A., Jenal, U. J. Biol. Chem. (2005) [Pubmed]
  26. Requirement of topoisomerase IV parC and parE genes for cell cycle progression and developmental regulation in Caulobacter crescentus. Ward, D., Newton, A. Mol. Microbiol. (1997) [Pubmed]
  27. Ordered expression of ftsQA and ftsZ during the Caulobacter crescentus cell cycle. Sackett, M.J., Kelly, A.J., Brun, Y.V. Mol. Microbiol. (1998) [Pubmed]
  28. The Caulobacter heat shock sigma factor gene rpoH is positively autoregulated from a sigma32-dependent promoter. Wu, J., Newton, A. J. Bacteriol. (1997) [Pubmed]
  29. Murein structure and lack of DD- and LD-carboxypeptidase activities in Caulobacter crescentus. Markiewicz, Z., Glauner, B., Schwarz, U. J. Bacteriol. (1983) [Pubmed]
WikiGenes - Universities