The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Neuritis, Autoimmune, Experimental

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Neuritis, Autoimmune, Experimental


High impact information on Neuritis, Autoimmune, Experimental


Chemical compound and disease context of Neuritis, Autoimmune, Experimental


Biological context of Neuritis, Autoimmune, Experimental


Anatomical context of Neuritis, Autoimmune, Experimental


Gene context of Neuritis, Autoimmune, Experimental


Analytical, diagnostic and therapeutic context of Neuritis, Autoimmune, Experimental


  1. The role of the very late antigen-4 and its counterligand vascular cell adhesion molecule-1 in the pathogenesis of experimental autoimmune neuritis of the Lewis rat. Enders, U., Lobb, R., Pepinsky, R.B., Hartung, H.P., Toyka, K.V., Gold, R. Brain (1998) [Pubmed]
  2. Dominance of autoreactive T cell-mediated delayed-type hypersensitivity or antibody-mediated demyelination results in distinct forms of experimental autoimmune neuritis in the Lewis rat. Taylor, J.M., Pollard, J.D. J. Neuropathol. Exp. Neurol. (2001) [Pubmed]
  3. Role of TNF-alpha in high-dose antigen therapy in experimental autoimmune neuritis: inhibition of TNF-alpha by neutralizing antibodies reduces T-cell apoptosis and prevents liver necrosis. Weishaupt, A., Gold, R., Hartung, T., Gaupp, S., Wendel, A., Brück, W., Toyka, K.V. J. Neuropathol. Exp. Neurol. (2000) [Pubmed]
  4. Cytokine-induced cell death in immortalized Schwann cells: roles of nitric oxide and cyclic AMP. Nagano, S., Takeda, M., Ma, L., Soliven, B. J. Neurochem. (2001) [Pubmed]
  5. Rolipram suppresses experimental autoimmune neuritis and prevents relapses in Lewis rats. Zou, L.P., Deretzi, G., Pelidou, S.H., Levi, M., Wahren, B., Quiding, C., van der Meide, P., Zhu, J. Neuropharmacology (2000) [Pubmed]
  6. T-cell antigen receptor transmembrane peptides modulate T-cell function and T cell-mediated disease. Manolios, N., Collier, S., Taylor, J., Pollard, J., Harrison, L.C., Bender, V. Nat. Med. (1997) [Pubmed]
  7. Transfer of demyelination by intraneural injection of experimental allergic neuritis serum. Saida, T., Saida, K., Silberberg, D.H., Brown, M.J. Nature (1978) [Pubmed]
  8. Production of tumor necrosis factor and other proinflammatory cytokines by human mononuclear phagocytes stimulated with myelin P2 protein. Baron, P., Constantin, G., D'Andrea, A., Ponzin, D., Scarpini, E., Scarlato, G., Trinchieri, G., Rossi, F., Cassatella, M.A. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  9. Expression of integrins in experimental autoimmune neuritis and Guillain-Barré syndrome. Previtali, S.C., Archelos, J.J., Hartung, H.P. Ann. Neurol. (1998) [Pubmed]
  10. Astrocytes upregulate glial fibrillary acidic protein (GFAP), but not insulin-like growth factor-I (IGF-I) during experimental autoimmune neuritis (EAN). Gehrmann, J., Yao, D.L., Bonetti, B., Brenner, M., Bondy, C., Wekerle, H., Kreutzberg, G.W., Webster, H.d.e. .F. Brain Pathol. (1995) [Pubmed]
  11. Treatment of acute inflammatory polyneuropathy. Hughes, R.A., Kadlubowski, M., Hufschmidt, A. Ann. Neurol. (1981) [Pubmed]
  12. Suppression of experimental autoimmune neuritis by leflunomide. Korn, T., Toyka, K., Hartung, H.P., Jung, S. Brain (2001) [Pubmed]
  13. The neurotrophic analogue of ACTH(4-9), Org 2766, protects against experimental allergic neuritis. Duckers, H.J., Verhaagen, J., Gispen, W.H. Brain (1993) [Pubmed]
  14. The role of macrophages and eicosanoids in the pathogenesis of experimental allergic neuritis. Serial clinical, electrophysiological, biochemical and morphological observations. Hartung, H.P., Schäfer, B., Heininger, K., Stoll, G., Toyka, K.V. Brain (1988) [Pubmed]
  15. Phosphatidylserine suppresses myelin-induced experimental allergic neuritis (EAN) in Lewis rats. Maeda, Y., Maeda, R., Prineas, J.W., Ledeen, R.W. J. Neuropathol. Exp. Neurol. (1994) [Pubmed]
  16. Cell adhesion molecules of the immunoglobulin supergene family as tissue-specific autoantigens: induction of experimental allergic neuritis (EAN) by P0 protein-specific T cell lines. Linington, C., Lassmann, H., Ozawa, K., Kosin, S., Mongan, L. Eur. J. Immunol. (1992) [Pubmed]
  17. Blockade of signaling via the very late antigen (VLA-4) and its counterligand vascular cell adhesion molecule-1 (VCAM-1) causes increased T cell apoptosis in experimental autoimmune neuritis. Leussink, V.I., Zettl, U.K., Jander, S., Pepinsky, R.B., Lobb, R.R., Stoll, G., Toyka, K.V., Gold, R. Acta Neuropathol. (2002) [Pubmed]
  18. Activation of extracellular signal-regulated kinases in the sciatic nerves of rats with experimental autoimmune neuritis. Ahn, M., Moon, C., Lee, Y., Koh, C.S., Kohyama, K., Tanuma, N., Matsumoto, Y., Kim, H.M., Kim, S.R., Shin, T. Neurosci. Lett. (2004) [Pubmed]
  19. Macrophages but not Schwann cells express Ia antigen in experimental autoimmune neuritis. Schmidt, B., Stoll, G., Hartung, H.P., Heininger, K., Schäfer, B., Toyka, K.V. Ann. Neurol. (1990) [Pubmed]
  20. Regulation of Fas and FasL expression on rat Schwann cells. Wohlleben, G., Ibrahim, S.M., Schmidt, J., Toyka, K.V., Hartung, H.P., Gold, R. Glia (2000) [Pubmed]
  21. Suppression of experimental autoimmune neuritis by ABR-215062 is associated with altered Th1/Th2 balance and inhibited migration of inflammatory cells into the peripheral nerve tissue. Zou, L.P., Abbas, N., Volkmann, I., Nennesmo, I., Levi, M., Wahren, B., Winblad, B., Hedlund, G., Zhu, J. Neuropharmacology (2002) [Pubmed]
  22. CCR5 deficiency does not prevent P0 peptide 180-199 immunized mice from experimental autoimmune neuritis. Duan, R.S., Chen, Z., Bao, L., Quezada, H.C., Nennesmo, I., Winblad, B., Zhu, J. Neurobiol. Dis. (2004) [Pubmed]
  23. Monocyte chemoattractant protein 1 and chemokine receptor CCR2 productions in Guillain-Barré syndrome and experimental autoimmune neuritis. Orlikowski, D., Chazaud, B., Plonquet, A., Poron, F., Sharshar, T., Maison, P., Raphaël, J.C., Gherardi, R.K., Créange, A. J. Neuroimmunol. (2003) [Pubmed]
  24. Involvement of cyclooxygenase-1 and -2 in the sciatic nerve of rats with experimental autoimmune neuritis. Shin, T., Lee, Y., Sim, K.B. Immunol. Invest. (2003) [Pubmed]
  25. IL-10 suppresses experimental autoimmune neuritis and down-regulates TH1-type immune responses. Bai, X.F., Zhu, J., Zhang, G.X., Kaponides, G., Höjeberg, B., van der Meide, P.H., Link, H. Clin. Immunol. Immunopathol. (1997) [Pubmed]
  26. Induction of experimental autoimmune neuritis with peripheral myelin protein-22. Gabriel, C.M., Hughes, R.A., Moore, S.E., Smith, K.J., Walsh, F.S. Brain (1998) [Pubmed]
  27. Enhancement of acute phase and inhibition of chronic phase of experimental autoimmune neuritis in Lewis rats by intranasal administration of recombinant mouse interleukin 17: potential immunoregulatory role. Pelidou, S.H., Zou, L.P., Deretzi, G., Oniding, C., Mix, E., Zhu, J. Exp. Neurol. (2000) [Pubmed]
  28. Antigen-specific immunosuppression: nasal tolerance to P0 protein peptides for the prevention and treatment of experimental autoimmune neuritis in Lewis rats. Zou, L.P., Ma, D.H., Levi, M., Wahren, B., Wei, L., Mix, E., van der Meide, P.H., Link, H., Zhu, J. J. Neuroimmunol. (1999) [Pubmed]
  29. Chemokine mRNA expression in the cauda equina of Lewis rats with experimental allergic neuritis. Fujioka, T., Purev, E., Rostami, A. J. Neuroimmunol. (1999) [Pubmed]
  30. Inducible nitric oxide synthase (iNOS) in immune-mediated demyelination and Wallerian degeneration of the rat peripheral nervous system. Conti, G., Rostami, A., Scarpini, E., Baron, P., Galimberti, D., Bresolin, N., Contri, M., Palumbo, C., De Pol, A. Exp. Neurol. (2004) [Pubmed]
  31. Systemic complement depletion reduces inflammation and demyelination in adoptive transfer experimental allergic neuritis. Vriesendorp, F.J., Flynn, R.E., Malone, M.R., Pappolla, M.A. Acta Neuropathol. (1998) [Pubmed]
WikiGenes - Universities