The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Subacute Sclerosing Panencephalitis

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Subacute Sclerosing Panencephalitis

 

Psychiatry related information on Subacute Sclerosing Panencephalitis

 

High impact information on Subacute Sclerosing Panencephalitis

 

Chemical compound and disease context of Subacute Sclerosing Panencephalitis

 

Biological context of Subacute Sclerosing Panencephalitis

  • The data show that the loss of the ET-1 signaling pathway in C6/SSPE and C6/CDV cells is due to a receptor downregulation at the transcriptional level [17].
  • F(ab')2 fragments prepared from SSPE IgG retained their activity, which showed that the assay measures a true antigen-antibody reaction rather than nonspecific adherence to IgG to MBP [18].
  • CONCLUSION: To our knowledge, this study is the first to demonstrate the possibility that the IL-4 promoter gene -589 T gene polymorphism with increased IL-4 synthesis in combination with IRF-1 allele 1 confers host genetic susceptibility to SSPE in Japanese subjects [19].
  • For these four patients, CSF ribavirin concentrations were maintained at a level at which SSPE virus replication was almost completely inhibited in vitro and in vivo, whereas the concentration was lower in the patient without clinical improvement [20].
  • The frequency of the genotype combination of IL-4 promoter -589 T and IRF-1 allele 1 (at least 1 allele) in patients with SSPE was much higher than that in the controls (47.7% vs 22.0%; P =.003, chi2 analysis) [19].
 

Anatomical context of Subacute Sclerosing Panencephalitis

  • To further characterize the TCR V alpha and V beta repertoire in MS plaque tissue, we examined a series of 26 histologically well-characterized central nervous system (CNS) tissue specimens from six MS patients as well as samples from five normal postmortem cases and a case of subacute sclerosing panencephalitis [21].
  • Indirect immunofluorescent analysis revealed that sera from five patients with subacute sclerosing panencephalitis possessed IgD antibodies directed against measles virus components in persistently infected HeLa cells [22].
  • Single cell clones from the antisense-transfected C6/SSPE cells appear to be totally free of virus in cocultivation with Vero cells, suggesting that they are really cured [23].
  • There were no significant differences between the CSF results in patients with NID and MS but the OKT3 lymphocytes were reduced in CSF samples from patients with SSPE [24].
  • The results suggest that T-lymphocytes are involved in the pathogenesis of both MS and SSPE [25].
 

Gene context of Subacute Sclerosing Panencephalitis

 

Analytical, diagnostic and therapeutic context of Subacute Sclerosing Panencephalitis

References

  1. Measles-virus proteins in the brain tissue of patients with subacute sclerosing panencephalitis: absence of the M protein. Hall, W.W., Choppin, P.W. N. Engl. J. Med. (1981) [Pubmed]
  2. Isoelectric focusing of IgG eluted from multiple sclerosis and subacute sclerosing panencephalitis brains. Mattson, D.H., Roos, R.P., Arnason, B.G. Nature (1980) [Pubmed]
  3. Neurodegenerative diseases of infancy and childhood. Dyken, P., Krawiecki, N. Ann. Neurol. (1983) [Pubmed]
  4. Blood-brain barrier damage in acute multiple sclerosis plaques. An immunocytological study. Gay, D., Esiri, M. Brain (1991) [Pubmed]
  5. Antigen discovery in chronic human inflammatory central nervous system disease: panning phage-displayed antigen libraries identifies the targets of central nervous system-derived IgG in subacute sclerosing panencephalitis. Burgoon, M.P., Owens, G.P., Carlson, S., Maybach, A.L., Gilden, D.H. J. Immunol. (2001) [Pubmed]
  6. Unexplained sudden amnesia, postencephalitic Parkinson disease, subacute sclerosing panencephalitis, and Alzheimer disease: does viral synergy produce neurofibrillary tangles? Ball, M.J. Arch. Neurol. (2003) [Pubmed]
  7. Association of measles virus with neurofibrillary tangles in subacute sclerosing panencephalitis: a combined in situ hybridization and immunocytochemical investigation. McQuaid, S., Allen, I.V., McMahon, J., Kirk, J. Neuropathol. Appl. Neurobiol. (1994) [Pubmed]
  8. Comparison of wild-type and subacute sclerosing panencephalitis strains of measles virus. Neurovirulence in ferrets and biological properties in cell cultures. Thormar, H., Mehta, P.D., Brown, H.R. J. Exp. Med. (1978) [Pubmed]
  9. Immunologic injury of cultured cells infected with measles virus. I. role of IfG antibody and the alternative complement pathway. Joseph, B.S., Cooper, N.R., Oldstone, M.B. J. Exp. Med. (1975) [Pubmed]
  10. Inosiplex for SSPE. Chalmers, T.C., Smith, H. Lancet (1982) [Pubmed]
  11. Levodopa in subacute sclerosing panencephalitis. Halikowski, B., Piotropawlowska-Weinert, M. Lancet (1977) [Pubmed]
  12. Intravenous and intrathecal adenine arabinoside phosphate in a child with subacute sclerosing panencephalitis. Webb, H.E., Kelly, R.E., Adams, D.H. Lancet (1977) [Pubmed]
  13. Alteration in phospholipid methylation and impairment of signal transmission in persistently paramyxovirus-infected C6 rat glioma cells. Münzel, P., Koschel, K. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  14. Review of 38 cases of subacute sclerosing panencephalitis: effect of amantadine on the natural course of the disease. Robertson, W.C., Clark, D.B., Markesbery, W.R. Ann. Neurol. (1980) [Pubmed]
  15. Role of biased hypermutation in evolution of subacute sclerosing panencephalitis virus from progenitor acute measles virus. Wong, T.C., Ayata, M., Ueda, S., Hirano, A. J. Virol. (1991) [Pubmed]
  16. Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. Cathomen, T., Naim, H.Y., Cattaneo, R. J. Virol. (1998) [Pubmed]
  17. Downregulation of endothelin receptor mRNA synthesis in C6 rat astrocytoma cells by persistent measles virus and canine distemper virus infections. Meissner, N.N., Koschel, K. J. Virol. (1995) [Pubmed]
  18. CSF antibody to myelin basic protein. Measurement in patients with multiple sclerosis and subacute sclerosing panencephalitis. Panitch, H.S., Hooper, C.J., Johnson, K.P. Arch. Neurol. (1980) [Pubmed]
  19. Contribution of the interleukin 4 gene to susceptibility to subacute sclerosing panencephalitis. Inoue, T., Kira, R., Nakao, F., Ihara, K., Bassuny, W.M., Kusuhara, K., Nihei, K., Takeshita, K., Hara, T. Arch. Neurol. (2002) [Pubmed]
  20. Pharmacokinetics and effects of ribavirin following intraventricular administration for treatment of subacute sclerosing panencephalitis. Hosoya, M., Mori, S., Tomoda, A., Mori, K., Sawaishi, Y., Kimura, H., Shigeta, S., Suzuki, H. Antimicrob. Agents Chemother. (2004) [Pubmed]
  21. T cell receptor V alpha-V beta repertoire and cytokine gene expression in active multiple sclerosis lesions. Wucherpfennig, K.W., Newcombe, J., Li, H., Keddy, C., Cuzner, M.L., Hafler, D.A. J. Exp. Med. (1992) [Pubmed]
  22. Measles virus-specific IgD antibodies in patients with subacute sclerosing panencephalitis. Luster, M.I., Armen, R.C., Hallum, J.V., Leslie, G.A. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  23. Measles virus antisense sequences specifically cure cells persistently infected with measles virus. Koschel, K., Brinckmann, U., Hoyningen-Huene, V.V. Virology (1995) [Pubmed]
  24. Surface markers on lymphocytes from human cerebrospinal fluid. Identification by monoclonal antibodies. Marrosu, M.G., Ennas, M.G., Murru, M.R., Marrosu, G., Cianchetti, C., Manconi, P.E. J. Neuroimmunol. (1983) [Pubmed]
  25. Immunohistochemical identification of T-lymphocytes in the central nervous system of patients with multiple sclerosis and subacute sclerosing panencephalitis. Kreth, H.W., Dunker, R., Rodt, H., Meyermann, R. J. Neuroimmunol. (1982) [Pubmed]
  26. Analysis of measles virus binding sites of the CD46 gene in patients with subacute sclerosing panencephalitis. Kusuhara, K., Sasaki, Y., Nakao, F., Ihara, K., Hattori, H., Yamashita, S., Nihei, K., Koide, N., Aiba, H., Takeshita, K., Hara, T. J. Infect. Dis. (2000) [Pubmed]
  27. HLA and C4 in subacute sclerosing panencephalitis. Harada, F., Onisawa, S., Suzuki, K., Matsumoto, H., Sasazuki, T. Tissue Antigens (1987) [Pubmed]
  28. Elevated interleukin-12 and CXCL10 in subacute sclerosing panencephalitis. Saruhan-Direskeneli, G., Gürses, C., Demirbilek, V., Yentür, S.P., Yilmaz, G., Onal, E., Yapici, Z., Yalçinkaya, C., Cokar, O., Akman-Demir, G., Gökyiğit, A. Cytokine (2005) [Pubmed]
  29. Inosiplex therapy in subacute sclerosing panencephalitis. A multicentre, non-randomised study in 98 patients. Jones, C.E., Dyken, P.R., Huttenlocher, P.R., Jabbour, J.T., Maxwell, K.W. Lancet (1982) [Pubmed]
  30. Loss of the endothelin signal pathway in C6 rat glioma cells persistently infected with measles virus. Tas, P.W., Koschel, K. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  31. Immune response in subacute sclerosing panencephalitis: reduced antibody response to the matrix protein of measles virus. Wechsler, S.L., Weiner, H.L., Fields, B.N. J. Immunol. (1979) [Pubmed]
  32. Major histocompatibility complex class I expression on neurons in subacute sclerosing panencephalitis and experimental subacute measles encephalitis. Gogate, N., Swoveland, P., Yamabe, T., Verma, L., Woyciechowska, J., Tarnowska-Dziduszko, E., Dymecki, J., Dhib-Jalbut, S. J. Neuropathol. Exp. Neurol. (1996) [Pubmed]
 
WikiGenes - Universities