The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Sensory Deprivation

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Sensory Deprivation

 

High impact information on Sensory Deprivation

 

Chemical compound and disease context of Sensory Deprivation

 

Biological context of Sensory Deprivation

 

Anatomical context of Sensory Deprivation

 

Gene context of Sensory Deprivation

 

Analytical, diagnostic and therapeutic context of Sensory Deprivation

References

  1. Calmodulin-dependent protein kinase II. Multifunctional roles in neuronal differentiation and synaptic plasticity. Kelly, P.T. Mol. Neurobiol. (1991) [Pubmed]
  2. Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb. Yamaguchi, M., Mori, K. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  3. Olfactory bulb recovery after early sensory deprivation. Cummings, D.M., Henning, H.E., Brunjes, P.C. J. Neurosci. (1997) [Pubmed]
  4. Effects of sensory deprivation on the developing mouse olfactory system: a light and electron microscopic, morphometric analysis. Benson, T.E., Ryugo, D.K., Hinds, J.W. J. Neurosci. (1984) [Pubmed]
  5. Changes in sensory-cognitive input: effects on cerebral blood flow. Cameron, O.G., Modell, J.G., Hichwa, R.D., Agranoff, B.W., Koeppe, R.A. J. Cereb. Blood Flow Metab. (1990) [Pubmed]
  6. Glutamate levels and transport in cat (Felis catus) area 17 during cortical reorganization following binocular retinal lesions. Massie, A., Cnops, L., Jacobs, S., Van Damme, K., Vandenbussche, E., Eysel, U.T., Vandesande, F., Arckens, L. J. Neurochem. (2003) [Pubmed]
  7. Effects of whisker trimming on GABA(A) receptor binding in the barrel cortex of developing and adult rats. Fuchs, J.L., Salazar, E. J. Comp. Neurol. (1998) [Pubmed]
  8. Regional cerebral palmitate incorporation after unilateral auditory deprivation in immature and adult Fischer-344 rats. Tone, O., Miller, J.C., Bell, J.M., Rapoport, S.I. Exp. Neurol. (1988) [Pubmed]
  9. Intrinsic sensory deprivation induced by neonatal capsaicin treatment induces changes in rat brain and behaviour of possible relevance to schizophrenia. Newson, P., Lynch-Frame, A., Roach, R., Bennett, S., Carr, V., Chahl, L.A. Br. J. Pharmacol. (2005) [Pubmed]
  10. Local changes in cerebral glucose utilization during ketamine anesthesia. Crosby, G., Crane, A.M., Sokoloff, L. Anesthesiology (1982) [Pubmed]
  11. Morphometric modifications associated with early sensory experience in the rat olfactory bulb: II. Stereological study of the population of olfactory glomeruli. Royet, J.P., Jourdan, F., Ploye, H., Souchier, C. J. Comp. Neurol. (1989) [Pubmed]
  12. Neonatal sensory deprivation reduces tufted cell number in mouse olfactory bulbs. Skeen, L.C., Due, B.R., Douglas, F.E. Neurosci. Lett. (1986) [Pubmed]
  13. Extracellular GABA concentrations in area 17 of cat visual cortex during topographic map reorganization following binocular central retinal lesioning. Massie, A., Cnops, L., Smolders, I., Van Damme, K., Vandenbussche, E., Vandesande, F., Eysel, U.T., Arckens, L. Brain Res. (2003) [Pubmed]
  14. Effects of sensory deprivation upon a single cortical vibrissal column: a 2DG study. Kossut, M. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1992) [Pubmed]
  15. Chronic sensory deprivation affects cytochrome oxidase staining and glutamic acid decarboxylase immunoreactivity in adult rat ventrobasal thalamus. Land, P.W., Akhtar, N.D. Brain Res. (1987) [Pubmed]
  16. Dissociation of synaptic zinc level and zinc transporter 3 expression during postnatal development and after sensory deprivation in the barrel cortex of mice. Liguz-Lecznar, M., Nowicka, D., Czupryn, A., Skangiel-Kramska, J. Brain Res. Bull. (2005) [Pubmed]
  17. Regulation of NMDA receptor subunit mRNA expression in the guinea pig vestibular nuclei following unilateral labyrinthectomy. Sans, N., Sans, A., Raymond, J. Eur. J. Neurosci. (1997) [Pubmed]
  18. Neonatal olfactory sensory deprivation decreases BDNF in the olfactory bulb of the rat. McLean, J.H., Darby-King, A., Bonnell, W.S. Brain Res. Dev. Brain Res. (2001) [Pubmed]
  19. Activity-dependent regulation of glutamic acid decarboxylase in the rat barrel cortex: effects of neonatal versus adult sensory deprivation. Akhtar, N.D., Land, P.W. J. Comp. Neurol. (1991) [Pubmed]
  20. Alterations in GAP-43 and synapsin immunoreactivity provide evidence for synaptic reorganization in adult cat dorsal lateral geniculate nucleus following retinal lesions. Baekelandt, V., Arckens, L., Annaert, W., Eysel, U.T., Orban, G.A., Vandesande, F. Eur. J. Neurosci. (1994) [Pubmed]
  21. Quantitative characteristics of alpha and theta EEG activities during sensory deprivation. Iwata, K., Nakao, M., Yamamoto, M., Kimura, M. Psychiatry and clinical neurosciences. (2001) [Pubmed]
 
WikiGenes - Universities