The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Limbic System

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Limbic System


Psychiatry related information on Limbic System


High impact information on Limbic System


Chemical compound and disease context of Limbic System


Biological context of Limbic System


Anatomical context of Limbic System


Associations of Limbic System with chemical compounds

  • These results provide biochemical evidence for the hypothesis that stimulation of dopamine transmission in the limbic system might be a fundamental property of drugs that are abused [31].
  • We have identified a receptor for MSH and ACTH peptides that is specifically expressed in regions of the hypothalamus and limbic system [32].
  • The functions of the cerebellum, the limbic system and the cortico-basal ganglia-thalamocortical loops are analyzed to illustrate the utility and applicability of this theoretical concept [33].
  • These results show that the learning impairments in the aged rats are related to the extent of decrease in glucose utilization in restricted areas of the limbic system [34].
  • Our results suggest that glutamate excitatory circuits recognized by these antisera are predominantly found in regions of the limbic system that are reciprocally interconnected [35].

Gene context of Limbic System


Analytical, diagnostic and therapeutic context of Limbic System


  1. Viral infection and dissemination through the olfactory pathway and the limbic system by Theiler's virus. Wada, Y., Fujinami, R.S. Am. J. Pathol. (1993) [Pubmed]
  2. Dopamine D2 receptor signaling controls neuronal cell death induced by muscarinic and glutamatergic drugs. Bozzi, Y., Borrelli, E. Mol. Cell. Neurosci. (2002) [Pubmed]
  3. Changes in local cerebral glucose utilization induced by convulsants. Pazdernik, T.L., Cross, R.S., Giesler, M., Samson, F.E., Nelson, S.R. Neuroscience (1985) [Pubmed]
  4. Time-dependent deficits in delay conditioning produced by trimethyltin. Peele, D.B., Farmer, J.D., Coleman, J.E. Psychopharmacology (Berl.) (1989) [Pubmed]
  5. Limbic encephalitis after inhalation of a murine coronavirus. Lavi, E., Fishman, P.S., Highkin, M.K., Weiss, S.R. Lab. Invest. (1988) [Pubmed]
  6. Novel dual repressor elements for neuronal cell-specific transcription of the rat 5-HT1A receptor gene. Ou, X.M., Jafar-Nejad, H., Storring, J.M., Meng, J.H., Lemonde, S., Albert, P.R. J. Biol. Chem. (2000) [Pubmed]
  7. Relationship of dysfunctional attitudes and dexamethasone response in endogenous and nonendogenous depression. Giles, D.E., Rush, A.J. Biol. Psychiatry (1982) [Pubmed]
  8. Schizophrenia in epilepsy: seizure and psychosis variables. Mendez, M.F., Grau, R., Doss, R.C., Taylor, J.L. Neurology (1993) [Pubmed]
  9. Frontotemporal dementia as a neural system disease. Boccardi, M., Sabattoli, F., Laakso, M.P., Testa, C., Rossi, R., Beltramello, A., Soininen, H., Frisoni, G.B. Neurobiol. Aging (2005) [Pubmed]
  10. Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide. Rogers, J., Strohmeyer, R., Kovelowski, C.J., Li, R. Glia (2002) [Pubmed]
  11. Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Rudolph, U., Crestani, F., Benke, D., Brünig, I., Benson, J.A., Fritschy, J.M., Martin, J.R., Bluethmann, H., Möhler, H. Nature (1999) [Pubmed]
  12. 5-HT3 receptors mediate inhibition of acetylcholine release in cortical tissue. Barnes, J.M., Barnes, N.M., Costall, B., Naylor, R.J., Tyers, M.B. Nature (1989) [Pubmed]
  13. Functional corticotropin releasing factor receptors in the primate peripheral sympathetic nervous system. Udelsman, R., Harwood, J.P., Millan, M.A., Chrousos, G.P., Goldstein, D.S., Zimlichman, R., Catt, K.J., Aguilera, G. Nature (1986) [Pubmed]
  14. Molecular and neuronal substrate for the selective attenuation of anxiety. Löw, K., Crestani, F., Keist, R., Benke, D., Brünig, I., Benson, J.A., Fritschy, J.M., Rülicke, T., Bluethmann, H., Möhler, H., Rudolph, U. Science (2000) [Pubmed]
  15. Activation of corticotropin-releasing factor in the limbic system during cannabinoid withdrawal. Rodríguez de Fonseca, F., Carrera, M.R., Navarro, M., Koob, G.F., Weiss, F. Science (1997) [Pubmed]
  16. Selective stimulation of kainate but not quisqualate or NMDA receptors in substantia nigra evokes limbic motor seizures. Maggio, R., Liminga, U., Gale, K. Brain Res. (1990) [Pubmed]
  17. Sleep deprivation increases dopamine D1 receptor antagonist [3H]SCH 23390 binding and dopamine-stimulated adenylate cyclase in the rat limbic system. Demontis, M.G., Fadda, P., Devoto, P., Martellotta, M.C., Fratta, W. Neurosci. Lett. (1990) [Pubmed]
  18. A single administration of testosterone induces cardiac accelerative responses to angry faces in healthy young women. van Honk, J., Tuiten, A., Hermans, E., Putman, P., Koppeschaar, H., Thijssen, J., Verbaten, R., van Doornen, L. Behav. Neurosci. (2001) [Pubmed]
  19. Are convulsant and toxic properties of folates of the kainate type? Tremblay, E., Cavalheiro, E., Ben-Ari, Y. Eur. J. Pharmacol. (1983) [Pubmed]
  20. Thyroid, brain and mood modulation in affective disorder: insights from molecular research and functional brain imaging. Bauer, M., London, E.D., Silverman, D.H., Rasgon, N., Kirchheiner, J., Whybrow, P.C. Pharmacopsychiatry (2003) [Pubmed]
  21. Immunohistochemical localization of the D1 dopamine receptor in rat brain reveals its axonal transport, pre- and postsynaptic localization, and prevalence in the basal ganglia, limbic system, and thalamic reticular nucleus. Huang, Q., Zhou, D., Chase, K., Gusella, J.F., Aronin, N., DiFiglia, M. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  22. Lack of association between a polymorphism in the promoter region of the dopamine-2 receptor gene and clozapine response. Arranz, M.J., Li, T., Munro, J., Liu, X., Murray, R., Collier, D.A., Kerwin, R.W. Pharmacogenetics (1998) [Pubmed]
  23. Lithium decreases membrane-associated protein kinase C in hippocampus: selectivity for the alpha isozyme. Manji, H.K., Etcheberrigaray, R., Chen, G., Olds, J.L. J. Neurochem. (1993) [Pubmed]
  24. Maturation of kainic acid seizure-brain damage syndrome in the rat. III. Postnatal development of kainic acid binding sites in the limbic system. Berger, M.L., Tremblay, E., Nitecka, L., Ben-Ari, Y. Neuroscience (1984) [Pubmed]
  25. Expression of c-fos in regions of the basal limbic forebrain following intracerebroventricular corticotropin-releasing factor in unstressed or stressed male rats. Arnold, F.J., De Lucas Bueno, M., Shiers, H., Hancock, D.C., Evan, G.I., Herbert, J. Neuroscience (1992) [Pubmed]
  26. Mapping patterns of c-fos expression in the central nervous system after seizure. Morgan, J.I., Cohen, D.R., Hempstead, J.L., Curran, T. Science (1987) [Pubmed]
  27. Is aromatization of testosterone to estradiol required for inhibition of luteinizing hormone secretion in men? Santen, R.J. J. Clin. Invest. (1975) [Pubmed]
  28. The central distribution of a corticotropin-releasing factor (CRF)-binding protein predicts multiple sites and modes of interaction with CRF. Potter, E., Behan, D.P., Linton, E.A., Lowry, P.J., Sawchenko, P.E., Vale, W.W. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  29. The role of the limbic system in experiential phenomena of temporal lobe epilepsy. Gloor, P., Olivier, A., Quesney, L.F., Andermann, F., Horowitz, S. Ann. Neurol. (1982) [Pubmed]
  30. Roles of Pax-genes in developing and adult brain as suggested by expression patterns. Stoykova, A., Gruss, P. J. Neurosci. (1994) [Pubmed]
  31. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Di Chiara, G., Imperato, A. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  32. Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Roselli-Rehfuss, L., Mountjoy, K.G., Robbins, L.S., Mortrud, M.T., Low, M.J., Tatro, J.B., Entwistle, M.L., Simerly, R.B., Cone, R.D. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  33. Highest level automatisms in the nervous system: a theory of functional principles underlying the highest forms of brain function. Baev, K.V. Prog. Neurobiol. (1997) [Pubmed]
  34. Regional changes in brain glucose metabolism reflect cognitive impairments in aged rats. Gage, F.H., Kelly, P.A., Björklund, A. J. Neurosci. (1984) [Pubmed]
  35. The characterization and localization of the glutamate receptor subunit GluR1 in the rat brain. Rogers, S.W., Hughes, T.E., Hollmann, M., Gasic, G.P., Deneris, E.S., Heinemann, S. J. Neurosci. (1991) [Pubmed]
  36. Steroidogenic factor 1 messenger ribonucleic acid expression in steroidogenic and nonsteroidogenic human tissues: Northern blot and in situ hybridization studies. Ramayya, M.S., Zhou, J., Kino, T., Segars, J.H., Bondy, C.A., Chrousos, G.P. J. Clin. Endocrinol. Metab. (1997) [Pubmed]
  37. Corticotropin-releasing factor receptor-2-deficient mice display abnormal homeostatic responses to challenges of increased dietary fat and cold. Bale, T.L., Anderson, K.R., Roberts, A.J., Lee, K.F., Nagy, T.R., Vale, W.W. Endocrinology (2003) [Pubmed]
  38. Neuropeptide Y Y5 receptor protein in the cortical/limbic system and brainstem of the rat: expression on gamma-aminobutyric acid and corticotropin-releasing hormone neurons. Grove, K.L., Campbell, R.E., Ffrench-Mullen, J.M., Cowley, M.A., Smith, M.S. Neuroscience (2000) [Pubmed]
  39. Identification and characterization of novel members of the CREG family, putative secreted glycoproteins expressed specifically in brain. Kunita, R., Otomo, A., Ikeda, J.E. Genomics (2002) [Pubmed]
  40. Long forms of the dopamine receptor (DRD4) gene VNTR are more prevalent in substance abusers: no interaction with functional alleles of the catechol-o-methyltransferase (COMT) gene. Vandenbergh, D.J., Rodriguez, L.A., Hivert, E., Schiller, J.H., Villareal, G., Pugh, E.W., Lachman, H., Uhl, G.R. Am. J. Med. Genet. (2000) [Pubmed]
  41. Statistical parametric mapping of (99m)Tc-ECD SPECT in idiopathic Parkinson's disease and multiple system atrophy with predominant parkinsonian features: correlation with clinical parameters. Van Laere, K., Santens, P., Bosman, T., De Reuck, J., Mortelmans, L., Dierckx, R. J. Nucl. Med. (2004) [Pubmed]
  42. Isolation and characterization of Bsk, a growth factor receptor-like tyrosine kinase associated with the limbic system. Zhou, R., Copeland, T.D., Kromer, L.F., Schulz, N.T. J. Neurosci. Res. (1994) [Pubmed]
  43. Lateralization of spike and wave complexes produced by hallucinogenic compounds in the cat. Contreras, C.M., Dorantes, M.E., Mexicano, G., Guzmán-Flores, C. Exp. Neurol. (1986) [Pubmed]
  44. Quantitative autoradiography of somatostatin receptors in the rat limbic system. Leroux, P., Weissmann, D., Pujol, J.F., Vaudry, H. J. Comp. Neurol. (1993) [Pubmed]
  45. Long-lasting induction of brain-derived neurotrophic factor is restricted to resistant cell populations in an animal model of status epilepticus. Revuelta, M., Castaño, A., Venero, J.L., Machado, A., Cano, J. Neuroscience (2001) [Pubmed]
WikiGenes - Universities