The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Grin2c  -  glutamate receptor, ionotropic, N-methyl D...

Rattus norvegicus

Synonyms: GluN2C, Glutamate receptor ionotropic, NMDA 2C, N-methyl D-aspartate receptor subtype 2C, NMDAR2C, NR2C
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Grin2c

 

Psychiatry related information on Grin2c

  • The transient changes in NR1 and the NR2C subunit mRNA expressions in response to sensory deprivation are consistent with an active role for NMDA receptors in the appearance and development of the vestibular compensatory process [3].
 

High impact information on Grin2c

  • The properties of these 'low-conductance' channels correspond to those described for recombinant NMDA receptors formed by coexpression of NR1 and NR2C subunits [4].
  • The apparent affinity for Zn2+ of the heteromeric NMDA receptors is determined by the subtype of NR2 subunit expressed, with NR2A-containing receptors being the most sensitive (IC50, approximately 20 nM) and NR2C-containing receptors being the least sensitive (IC50, approximately 30 microM) [5].
  • However, the predicted slowing of decay kinetics to a value more characteristic of NR2C deactivation, was not seen until P40 [6].
  • In culture, 25 mM KCl or NMDA rapidly induced NR2A and downregulated NR2B, followed by gradual induction of NR2C [7].
  • An en passant observation concerned high levels of NR2C mRNA in the pineal gland [8].
 

Chemical compound and disease context of Grin2c

  • In addition, increases in tyrosine phosphorylation of the NR2A/B subunits, but not of the NR2C subunit, of the N-methyl-D-aspartate receptor occurred at 5, 30, and 60 min of hypoxia in the dorsocaudal brain stem and returned to baseline values at 120 min [9].
 

Biological context of Grin2c

 

Anatomical context of Grin2c

 

Associations of Grin2c with chemical compounds

 

Regulatory relationships of Grin2c

  • We therefore suggest that the glycine site plays a lesser role in modulating NMDA receptor function in the cerebellum and may explain why cells expressing NMDA receptors composed of NR1/NR2C subunits are particularly resistant to excitatory amino acid-induced neurotoxicity [12].
 

Other interactions of Grin2c

 

Analytical, diagnostic and therapeutic context of Grin2c

  • RT-PCR studies performed on tissue preparations of adult rats also revealed a distinct expression of NR2C mRNA [26].
  • The NMDAR2C subunit was detected in PC12 cells by Northern blotting and trace amounts of NMDAR2A, B and D were detected by PCR [27].
  • Western blot analysis revealed that NR1 (P= 0.009) and NR2C (P= 0.003) protein abundance was significantly higher in the renal cortex short-term gentamicin rats [22].
  • Eight weeks after transplantation, analysis demonstrated acquisition of an adult differentiation status reflected by abundant GABAA alpha 6 and NR2C mRNA expression in granule cells [28].

References

  1. In vitro hypoxia induces expression of the NR2C subunit of the NMDA receptor in rat cortex and hippocampus. Perez-Velazquez, J.L., Zhang, L. J. Neurochem. (1994) [Pubmed]
  2. NMDAR-2C and 2D subunits gene expression is induced in brain by neonatal exposure of monosodium L-glutamate to adult rats. Beas-Zárate, C., Flores-Soto, M.E., Armendariz-Borunda, J. Neurosci. Lett. (2002) [Pubmed]
  3. Regulation of NMDA receptor subunit mRNA expression in the guinea pig vestibular nuclei following unilateral labyrinthectomy. Sans, N., Sans, A., Raymond, J. Eur. J. Neurosci. (1997) [Pubmed]
  4. NMDA-receptor channel diversity in the developing cerebellum. Farrant, M., Feldmeyer, D., Takahashi, T., Cull-Candy, S.G. Nature (1994) [Pubmed]
  5. Four residues of the extracellular N-terminal domain of the NR2A subunit control high-affinity Zn2+ binding to NMDA receptors. Fayyazuddin, A., Villarroel, A., Le Goff, A., Lerma, J., Neyton, J. Neuron (2000) [Pubmed]
  6. Developmental profile of the changing properties of NMDA receptors at cerebellar mossy fiber-granule cell synapses. Cathala, L., Misra, C., Cull-Candy, S. J. Neurosci. (2000) [Pubmed]
  7. Neuronal activity differentially regulates NMDA receptor subunit expression in cerebellar granule cells. Vallano, M.L., Lambolez, B., Audinat, E., Rossier, J. J. Neurosci. (1996) [Pubmed]
  8. The differential expression of 16 NMDA and non-NMDA receptor subunits in the rat spinal cord and in periaqueductal gray. Tölle, T.R., Berthele, A., Zieglgänsberger, W., Seeburg, P.H., Wisden, W. J. Neurosci. (1993) [Pubmed]
  9. Tyrosine kinase inhibitors modulate the ventilatory response to hypoxia in the conscious rat. Czapla, M.A., Simakajornboon, N., Holt, G.A., Gozal, D. J. Appl. Physiol. (1999) [Pubmed]
  10. Duality of glutamatergic and GABAergic control of pulsatile GnRH secretion by rat hypothalamic explants: II. Reduced NR2C- and GABAA-receptor-mediated inhibition at initiation of sexual maturation. Bourguignon, J.P., Gérard, A., Purnelle, G., Czajkowski, V., Yamanaka, C., Lemaître, M., Rigo, J.M., Moonen, G., Franchimont, P. J. Neuroendocrinol. (1997) [Pubmed]
  11. Tissue specific control regions of the N-methyl-D-aspartate receptor subunit NR2C promoter. Suchanek, B., Seeburg, P.H., Sprengel, R. Biol. Chem. (1997) [Pubmed]
  12. Failure of glycine site NMDA receptor antagonists to protect against L-2-chloropropionic acid-induced neurotoxicity highlights the uniqueness of cerebellar NMDA receptors. Widdowson, P.S., Gyte, A.J., Upton, R., Wyatt, I. Brain Res. (1996) [Pubmed]
  13. Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. Ishii, T., Moriyoshi, K., Sugihara, H., Sakurada, K., Kadotani, H., Yokoi, M., Akazawa, C., Shigemoto, R., Mizuno, N., Masu, M. J. Biol. Chem. (1993) [Pubmed]
  14. The molecular basis of NMDA receptor subtypes: native receptor diversity is predicted by subunit composition. Buller, A.L., Larson, H.C., Schneider, B.E., Beaton, J.A., Morrisett, R.A., Monaghan, D.T. J. Neurosci. (1994) [Pubmed]
  15. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. Akazawa, C., Shigemoto, R., Bessho, Y., Nakanishi, S., Mizuno, N. J. Comp. Neurol. (1994) [Pubmed]
  16. Amygdala kindling alters N-methyl-D-aspartate receptor subunit messenger RNA expression in the rat supraoptic nucleus. Al-Ghoul, W.M., Meeker, R.B., Greenwood, R.S. Neuroscience (1997) [Pubmed]
  17. Organization of N-methyl-D-aspartate glutamate receptor gene expression in the basal ganglia of the rat. Standaert, D.G., Testa, C.M., Young, A.B., Penney, J.B. J. Comp. Neurol. (1994) [Pubmed]
  18. The endogenous agonist quinolinic acid and the non endogenous homoquinolinic acid discriminate between NMDAR2 receptor subunits. de Carvalho, L.P., Bochet, P., Rossier, J. Neurochem. Int. (1996) [Pubmed]
  19. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in vasopressin and oxytocin neuroendocrine cells. Al-Ghoul, W.M., Meeker, R.B., Greenwood, R.S. Brain Res. Mol. Brain Res. (1997) [Pubmed]
  20. Synthesis and pharmacology of N1-substituted piperazine-2,3-dicarboxylic acid derivatives acting as NMDA receptor antagonists. Morley, R.M., Tse, H.W., Feng, B., Miller, J.C., Monaghan, D.T., Jane, D.E. J. Med. Chem. (2005) [Pubmed]
  21. Spermine potentiation of recombinant N-methyl-D-aspartate receptors is affected by subunit composition. Zhang, L., Zheng, X., Paupard, M.C., Wang, A.P., Santchi, L., Friedman, L.K., Zukin, R.S., Bennett, M.V. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  22. Altered NMDA receptor expression in renal toxicity: Protection with a receptor antagonist. Leung, J.C., Marphis, T., Craver, R.D., Silverstein, D.M. Kidney Int. (2004) [Pubmed]
  23. Distribution of NMDA receptor subunit proteins NR2A, 2B, 2C and 2D in rat brain. Wenzel, A., Scheurer, L., Künzi, R., Fritschy, J.M., Mohler, H., Benke, D. Neuroreport (1995) [Pubmed]
  24. Reversal of glutamate excitotoxicity by activation of PKC-associated metabotropic glutamate receptors in cerebellar granule cells relies on NR2C subunit expression. Pizzi, M., Boroni, F., Bianchetti, K.M., Memo, M., Spano, P. Eur. J. Neurosci. (1999) [Pubmed]
  25. Localization of glutamate receptors in dorsal horn of rat spinal cord. Yung, K.K. Neuroreport (1998) [Pubmed]
  26. Single-cell RT-PCR analysis of N-methyl-D-aspartate receptor subunit expression in rat locus coeruleus neurones. Allgaier, C., Durmaz, M., Müller, D., Franke, H., Poelchen, W., Wirkner, K., Illes, P. Naunyn Schmiedebergs Arch. Pharmacol. (2001) [Pubmed]
  27. Expression of N-methyl-D-aspartate receptor subunit mRNAs in the rat pheochromocytoma cell line PC12. Leclerc, C.L., Chi, C.L., Awobuluyi, M., Sucher, N.J. Neurosci. Lett. (1995) [Pubmed]
  28. Expression of cerebellar specific glutamate and GABAA receptor subunits in heterotopic cerebellar grafts. Sommer, C., Bele, S., Kiessling, M. Brain Res. Dev. Brain Res. (1997) [Pubmed]
 
WikiGenes - Universities