The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Nitrosomonas

  • Incorporation of 13C from [13C]urea was low but significant, and the largest amounts of urea-derived C were found in common fatty acids (i.e., 16:0, 16:1omega7c, and 18:1omega7) that would be consistent with growth of typical NH4(+)-oxidizing (Nitrosomonas) and NO2(-)-oxidizing (Nitrobacter) bacteria [1].
  • We have found that DPI inhibits both membrane-bound methane monooxygenase (pMMO) from Methylococcus capsulatus and ammonia monooxygenase (AMO) of Nitrosomonas europaea [2].
  • The cytochrome reacted rapidly with pseudomonas aeruginosa nitrite reductase [EC], but slowly with bovine cytochrome oxidase [EC], yeast cytochrome c peroxidase [EC], or Nitrosomonas europaea hydroxylamine-cytochrome c reductase [EC] [3].
  • With the aid of multidimensional scaling (MDS), a multivariate statistical method, we examined the toxicity data of five bioassays (the continuous Shk1, Polytox, activated sludge respiration inhibition, Nitrosomonas, and Tetrahymena assays) that could serve as test battery components for the assessment of wastewater toxicity to activated sludge [4].
  • The gene organization of the cytochrome showed some resemblance to cytochrome c clusters of unknown function in the genome of Nitrosomonas europaea and Geobacter sulfurreducens PCA [5].

High impact information on Nitrosomonas

  • The 2.8 A structure of hydroxylamine oxidoreductase from a nitrifying chemoautotrophic bacterium, Nitrosomonas europaea [6].
  • From recent research it has become clear that at least two different possibilities for anaerobic ammonium oxidation exist in nature. 'Aerobic' ammonium oxidizers like Nitrosomonas eutropha were observed to reduce nitrite or nitrogen dioxide with hydroxylamine or ammonium as electron donor under anoxic conditions [7].
  • A distinctive electrocatalytic response from the cytochrome c peroxidase of nitrosomonas europaea [8].
  • A di-heme cytochrome c peroxidase from Nitrosomonas europaea catalytically active in both the oxidized and half-reduced states [9].
  • 14C2H2- and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase [10].

Chemical compound and disease context of Nitrosomonas


Biological context of Nitrosomonas


Anatomical context of Nitrosomonas


Gene context of Nitrosomonas


Analytical, diagnostic and therapeutic context of Nitrosomonas

  • The phenotypes of three different Nitrosomonas europaea strains--wild-type, nitrite reductase (NirK)-deficient and nitric oxide reductase (NorB)-deficient strains--were characterized in chemostat cell cultures, and the effect of nitric oxide (NO) on metabolic activities was evaluated [25].
  • Hydroxylamine oxidoreductase [EC] from Nitrosomonas europaea was crystallized by the microdialysis method using ammonium sulfate [26].
  • However, in situ hybridization results revealed that the addition of NH2OH changed the form of growth pattern of the dominant Nitrosomonas spp. from dense clusters mode to single scattered cells mode [27].
  • The effect of solids retention time (SRT) on ammonia-and nitrite-oxidizing bacteria was measured by Nitrosomonas oligotropha-like ammonia monooxygenase A and Nitrospira 16S rDNA competitive polymerase chain reaction assays in a complete-mix, bench-scale, activated-sludge system [28].
  • As a result, it was possible to detect and quantify amoA expression in cultured Nitrosomonas europaea and even complex microbial communities such as nitrifying bacterial aggregates by competitive RT-PCR [29].


  1. Dynamics of a pasture soil microbial community after deposition of cattle urine amended with [13C]urea. Petersen, S.O., Roslev, P., Bol, R. Appl. Environ. Microbiol. (2004) [Pubmed]
  2. Inhibition of membrane-bound methane monooxygenase and ammonia monooxygenase by diphenyliodonium: implications for electron transfer. Shiemke, A.K., Arp, D.J., Sayavedra-Soto, L.A. J. Bacteriol. (2004) [Pubmed]
  3. Purification and some properties of cytochrome c-552 from an extreme thermophile, Thermus thermophilus HB8. Hon-Nami, K., Oshima, T. J. Biochem. (1977) [Pubmed]
  4. Use of multidimensional scaling in the selection of wastewater toxicity test battery components. Ren, S., Frymier, P.D. Water Res. (2003) [Pubmed]
  5. A new soluble 10kDa monoheme cytochrome c-552 from the anammox bacterium Candidatus "Kuenenia stuttgartiensis". Cirpus, I.E., de Been, M., den Camp, H.J., Strous, M., Le Paslier, D., Kuenen, G.J., Jetten, M.S. FEMS Microbiol. Lett. (2005) [Pubmed]
  6. The 2.8 A structure of hydroxylamine oxidoreductase from a nitrifying chemoautotrophic bacterium, Nitrosomonas europaea. Igarashi, N., Moriyama, H., Fujiwara, T., Fukumori, Y., Tanaka, N. Nat. Struct. Biol. (1997) [Pubmed]
  7. The anaerobic oxidation of ammonium. Jetten, M.S., Strous, M., van de Pas-Schoonen, K.T., Schalk, J., van Dongen, U.G., van de Graaf, A.A., Logemann, S., Muyzer, G., van Loosdrecht, M.C., Kuenen, J.G. FEMS Microbiol. Rev. (1998) [Pubmed]
  8. A distinctive electrocatalytic response from the cytochrome c peroxidase of nitrosomonas europaea. Bradley, A.L., Chobot, S.E., Arciero, D.M., Hooper, A.B., Elliott, S.J. J. Biol. Chem. (2004) [Pubmed]
  9. A di-heme cytochrome c peroxidase from Nitrosomonas europaea catalytically active in both the oxidized and half-reduced states. Arciero, D.M., Hooper, A.B. J. Biol. Chem. (1994) [Pubmed]
  10. 14C2H2- and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase. Hyman, M.R., Arp, D.J. J. Biol. Chem. (1992) [Pubmed]
  11. Oxidation of ammonia by Nitrosomonas europaea. Definite 18O-tracer evidence that hydroxylamine formation involves a monooxygenase. Hollocher, T.C., Tate, M.E., Nicholas, D.J. J. Biol. Chem. (1981) [Pubmed]
  12. Mössbauer, EPR, and optical studies of the P-460 center of hydroxylamine oxidoreductase from Nitrosomonas. A ferrous heme with an unusually large quadrupole splitting. Andersson, K.K., Kent, T.A., Lipscomb, J.D., Hooper, A.B., Münck, E. J. Biol. Chem. (1984) [Pubmed]
  13. Methane oxidation by Nitrosomonas europaea. Hyman, M.R., Wood, P.M. Biochem. J. (1983) [Pubmed]
  14. Suicide inactivation of hydroxylamine oxidoreductase of Nitrosomonas europaea by organohydrazines. Logan, M.S., Hooper, A.B. Biochemistry (1995) [Pubmed]
  15. NIH shift in the hydroxylation of aromatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Evidence against an arene oxide intermediate. Vannelli, T., Hooper, A.B. Biochemistry (1995) [Pubmed]
  16. Spectroscopic characterization of the NO adduct of hydroxylamine oxidoreductase. Hendrich, M.P., Upadhyay, A.K., Riga, J., Arciero, D.M., Hooper, A.B. Biochemistry (2002) [Pubmed]
  17. Disruption of sucA, which encodes the E1 subunit of alpha-ketoglutarate dehydrogenase, affects the survival of Nitrosomonas europaea in stationary phase. Hommes, N.G., Kurth, E.G., Sayavedra-Soto, L.A., Arp, D.J. J. Bacteriol. (2006) [Pubmed]
  18. Mutagenesis of hydroxylamine oxidoreductase in Nitrosomonas europaea by transformation and recombination. Hommes, N.G., Sayavedra-Soto, L.A., Arp, D.J. J. Bacteriol. (1996) [Pubmed]
  19. Amplification of the amoA gene from diverse species of ammonium-oxidizing bacteria and from an indigenous bacterial population from seawater. Sinigalliano, C.D., Kuhn, D.N., Jones, R.D. Appl. Environ. Microbiol. (1995) [Pubmed]
  20. An electrophoretic study of the thermal- and reductant-dependent aggregation of the 27 kDa component of ammonia monooxygenase from Nitrosomonas europaea. Hyman, M.R., Arp, D.J. Electrophoresis (1993) [Pubmed]
  21. Cloning, nucleotide sequence, and regulatory analysis of the Nitrosomonas europaea dnaK gene. Iizumi, T., Nakamura, K. Appl. Environ. Microbiol. (1997) [Pubmed]
  22. Isolation and characterization of cbbL and cbbS genes encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase large and small subunits in Nitrosomonas sp. strain ENI-11. Hirota, R., Kato, J., Morita, H., Kuroda, A., Ikeda, T., Takiguchi, N., Ohtake, H. Biosci. Biotechnol. Biochem. (2002) [Pubmed]
  23. Regulatory analysis of the Nitrosomonas europaea grpE-dnaK-dnaJ operon. Iizumi, T., Nakamura, K. J. Biosci. Bioeng. (1999) [Pubmed]
  24. Expression of nitrite reductase in Nitrosomonas europaea involves NsrR, a novel nitrite-sensitive transcription repressor. Beaumont, H.J., Lens, S.I., Reijnders, W.N., Westerhoff, H.V., van Spanning, R.J. Mol. Microbiol. (2004) [Pubmed]
  25. Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants. Schmidt, I., van Spanning, R.J., Jetten, M.S. Microbiology (Reading, Engl.) (2004) [Pubmed]
  26. Crystallization and preliminary X-ray studies of hydroxylamine oxidoreductase from Nitrosomonas europaea. Mikami, T., Tanaka, N., Sato, T., Moriyama, H., Numata, M., Fujiwara, T., Fukumori, Y., Yamanaka, T., Sato, M., Kakiuchi, K. J. Biochem. (1991) [Pubmed]
  27. Effects of hydroxylamine on microbial community structure and function of autotrophic nitrifying biofilms determined by in situ hybridization and the use of microelectrodes. Kindaichi, T., Okabe, S., Satoh, H., Watanabe, Y. Water Sci. Technol. (2004) [Pubmed]
  28. Quantification of Nitrosomonas oligotropha and Nitrospira spp. using competitive polymerase chain reaction in bench-scale wastewater treatment reactors operating at different solids retention times. Dionisi, H.M., Layton, A.C., Robinson, K.G., Brown, J.R., Gregory, I.R., Parker, J.J., Sayler, G.S. Water Environ. Res. (2002) [Pubmed]
  29. Detection and quantification of expression of amoA by competitive reverse transcription-pCR. Ebie, Y., Miura, H., Noda, N., Matsumura, M., Tsuneda, S., Hirata, A., Inamori, Y. Water Sci. Technol. (2002) [Pubmed]
WikiGenes - Universities