The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Hormatox     2-(2,4- dichlorophenoxy)propanoic acid

Synonyms: Mayclene, Polymone, Polyclene, Polytox, Cornoxynil, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Desormone

  • Enantioselective uptake and degradation of the chiral herbicide dichlorprop [(RS)-2-(2,4-dichlorophenoxy)propanoic acid] by Sphingomonas herbicidovorans MH [1].
  • Correlation between toxicity tests done in aqueous medium and soil for Polytox test culture was statistically significant and yielded an r2 of 0.816 [2].
  • The relative sensitivity of various aquatic organisms to nonpolar chemicals was as follows: P. subcapitata > Vibriofischeri > or = Nitrosomonas sp. > fathead minnow > Daphnia magna > polytox > activated sludge [3].
  • The two enantiospecific dichlorprop/alpha-ketoglutarate-dioxygenases from Delftia acidovorans MC1--protein and sequence data of RdpA and SdpA [4].
 

High impact information on Desormone

  • Organic nutrient enrichments shifted enantioselectivity for methyl dichlorprop ((RS)-methyl 2-(2,4-dichlorophenoxy)propionic acid) strongly towards preferentially removing the non-herbicidal enantiomer in soils from Brazil and North America, potentially increasing phytotoxicity of its residues relative to that of the racemate [5].
  • The functionally important amino acid sequence motif HX(D/E)X(23-26)(T/S)X(114-183)HX(10-13)R/K, which is highly conserved in group II alpha-ketoglutarate-dependent dioxygenases, was present in both dichlorprop-cleaving enzymes [6].
  • Hybridization studies comparing the wild-type plasmid and that of the mutant unable to cleave dichlorprop showed that rdpA and sdpA were deleted, whereas the lower pathway genes were unaffected, and that deletion may be caused by genetic rearrangements of the IS91-like elements [6].
  • Correlations between pH and ES have previously been reported for other pesticides (metalaxyl, dichlorprop, mecoprop), but the presence or absence of such correlations is not obviously linked to the pathways of degradation [7].
  • Degradation of phenoxy acids was demonstrated in microcosm experiments using groundwater and sediment contaminated with MCPP, dichlorprop, and related compounds such as other phenoxypropionic acids and chlorophenols [8].
 

Chemical compound and disease context of Desormone

 

Biological context of Desormone

 

Anatomical context of Desormone

 

Associations of Desormone with other chemical compounds

 

Gene context of Desormone

  • R. Grace vermiculite (Ver), and Tung-Wei (Tw) soil montmorillonite were prepared to sorb or remove chlorophenoxy propionic acids (CPA) pollutants such as 2,4-dichlorophenoxy acid (2,4-DP), 2,4,6-tri chlorophenoxy acid (2,4,6-TCP), and pentachlorophenoxy propionic acid (PCP) [19].
  • The inhibitory activity of the compounds against thymidylate synthetase is enhanced by the presence of apolar groups with a positive inductive effect, provided these groups do not extend the plane of the 2,4-DP ring [22].
 

Analytical, diagnostic and therapeutic context of Desormone

References

  1. Enantioselective uptake and degradation of the chiral herbicide dichlorprop [(RS)-2-(2,4-dichlorophenoxy)propanoic acid] by Sphingomonas herbicidovorans MH. Zipper, C., Bunk, M., Zehnder, A.J., Kohler, H.P. J. Bacteriol. (1998) [Pubmed]
  2. Microbial toxicity in soil medium. Arulgnanendran, V.R., Nirmalakhandan, N. Ecotoxicol. Environ. Saf. (1998) [Pubmed]
  3. Quantitative structure-activity relationships for toxicity of nonpolar narcotic chemicals to Pseudokirchneriella subcapitata. Hsieh, S.H., Hsu, C.H., Tsai, D.Y., Chen, C.Y. Environ. Toxicol. Chem. (2006) [Pubmed]
  4. The two enantiospecific dichlorprop/alpha-ketoglutarate-dioxygenases from Delftia acidovorans MC1--protein and sequence data of RdpA and SdpA. Westendorf, A., Benndorf, D., Müller, R.H., Babel, W. Microbiol. Res. (2002) [Pubmed]
  5. Influence of environmental changes on degradation of chiral pollutants in soils. Lewis, D.L., Garrison, A.W., Wommack, K.E., Whittemore, A., Steudler, P., Melillo, J. Nature (1999) [Pubmed]
  6. Localization and characterization of two novel genes encoding stereospecific dioxygenases catalyzing 2(2,4-dichlorophenoxy)propionate cleavage in Delftia acidovorans MC1. Schleinitz, K.M., Kleinsteuber, S., Vallaeys, T., Babel, W. Appl. Environ. Microbiol. (2004) [Pubmed]
  7. Influence of pH on the stereoselective degradation of the fungicides epoxiconazole and cyproconazole in soils. Buerge, I.J., Poiger, T., Müller, M.D., Buser, H.R. Environ. Sci. Technol. (2006) [Pubmed]
  8. Can degradation products be used as documentation for natural attenuation of phenoxy acids in groundwater? Reitzel, L.A., Tuxen, N., Ledin, A., Bjerg, P.L. Environ. Sci. Technol. (2004) [Pubmed]
  9. A rapid method to screen degradation ability in chlorophenoxyalkanoic acid herbicide-degrading bacteria. Smejkal, C.W., Vallaeys, T., Burton, S.K., Lappin-Scott, H.M. Lett. Appl. Microbiol. (2001) [Pubmed]
  10. Studies on phenoxy acid herbicides. I. Field study. Occupational exposure to phenoxy acid herbicides (MCPA, dichlorprop, mecoprop and 2,4-D) in agriculture. Kolmodin-Hedman, B., Höglund, S., Akerblom, M. Arch. Toxicol. (1983) [Pubmed]
  11. Development and application of a resazurin-based biomass activity test for activated sludge plant management. McNicholl, B.P., McGrath, J.W., Quinn, J.P. Water Res. (2007) [Pubmed]
  12. Analysis of genotoxic activity of 16 compounds and mixtures by the Drosophila mosaic test. Surjan, A. Ann. Ist. Super. Sanita (1989) [Pubmed]
  13. Toxicokinetics of the herbicide dichlorprop and its leucinate and their action on liver mixed function oxidase in rats. Beitz, H., Banasiak, U., Gericke, S., Clausing, P. Arch. Toxicol. Suppl. (1985) [Pubmed]
  14. Behavioral responses of the ciliated protozoan Paramecium caudatum to 2,4-dichlorophenoxyacetic acid and its analogues. Takiguchi, N., Tajima, T., Asayama, K., Ikeda, T., Kuroda, A., Kato, J., Ohtake, H. J. Biosci. Bioeng. (2002) [Pubmed]
  15. Comparison of HPLC and CE for the analysis of dichlorprop in a case of intoxication. West, A., Frost, M., Köhler, H. Int. J. Legal Med. (1997) [Pubmed]
  16. The effect of structurally divergent herbicides on mouse liver xenobiotic-metabolizing enzymes (P-450-dependent mono-oxygenases, epoxide hydrolases and glutathione S-transferases) and carnitine acetyltransferase. Moody, D.E., Narloch, B.A., Shull, L.R., Hammock, B.D. Toxicol. Lett. (1991) [Pubmed]
  17. Microwave assisted solvent extraction and coupled-column reversed-phase liquid chromatography with UV detection use of an analytical restricted-access-medium column for the efficient multi-residue analysis of acidic pesticides in soils. Hogendoom, E.A., Huls, R., Dijkman, E., Hoogerbrugge, R. Journal of chromatography. A. (2001) [Pubmed]
  18. Enantioselective degradation of metalaxyl in soils: chiral preference changes with soil pH. Buerge, I.I., Poiger, T., Müller, M.D., Buser, H.R. Environ. Sci. Technol. (2003) [Pubmed]
  19. Sorption of chlorophenoxy propionic acids by organoclay complexes. Liao, C.J., Chen, C.P., Wang, M.K., Chiang, P.N., Pai, C.W. Environ. Toxicol. (2006) [Pubmed]
  20. Analysing transformation products of herbicide residues in environmental samples. Juhler, R.K., Sørensen, S.R., Larsen, L. Water Res. (2001) [Pubmed]
  21. Pesticide transport in an aerobic aquifer with variable pH--modeling of a field scale injection experiment. Højberg, A.L., Engesgaard, P., Bjerg, P.L. J. Contam. Hydrol. (2005) [Pubmed]
  22. Linear free energy-related and quantitative structure-activity relationships of inhibitors of thymidylate synthetase. Mager, P.P. Drug Des. Deliv. (1991) [Pubmed]
  23. Preparative enantiomer separation of dichlorprop with a cinchona-derived chiral selector employing centrifugal partition chromatography and high-performance liquid chromatography: a comparative study. Gavioli, E., Maier, N.M., Minguillón, C., Lindner, W. Anal. Chem. (2004) [Pubmed]
  24. Phase-modulation fluorescence lifetime immunoassay of dichlorprop. Garcia Sanchez, F., Navas, A., Lovillo, J. Anal. Biochem. (1993) [Pubmed]
  25. Use of multidimensional scaling in the selection of wastewater toxicity test battery components. Ren, S., Frymier, P.D. Water Res. (2003) [Pubmed]
 
WikiGenes - Universities