The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

CHEBI:9473     2,3,4,5-tetrachloro-6- hydroxy-N-phenyl...

Synonyms: SK509, AC1L3YOY, CTK2H9174, DNC001336, DNC001424, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Tetrachlorosalicylanilide

 

High impact information on Tetrachlorosalicylanilide

 

Chemical compound and disease context of Tetrachlorosalicylanilide

 

Biological context of Tetrachlorosalicylanilide

 

Anatomical context of Tetrachlorosalicylanilide

  • These results suggest that application and photoactivation of TCSA induces cellular and functional changes in the lymph node DC indicative of their involvement in the induction phase of a contact photoallergic reaction [7].
  • The role of Langerhans cells in the induction of contact photosensitivity (CPS) to tetrachlorosalicylanilide (TCSA) was investigated in mice [14].
  • Responder lymphocytes from untreated mice or mice photosensitized with musk ambrette showed a much lower response to DC isolated from TCSA + UVA-treated mice, demonstrating the specificity of the reaction [7].
  • In addition, keratinocyte expression of CD54 was also augmented by TCSA plus UVA [15].
 

Associations of Tetrachlorosalicylanilide with other chemical compounds

 

Gene context of Tetrachlorosalicylanilide

  • Genetic control of contact photosensitivity to tetrachlorosalicylanilide. II. Igh complex controls the sensitivity induced by photohapten-modified spleen cells but not epidermal cells [21].
  • Mechanisms of contact photosensitivity in mice: I. T cell regulation of contact photosensitivity to tetrachlorosalicylanilide under the genetic restrictions of the major histocompatibility complex [22].
  • However, irradiation (lambda = 356 nm) of TCSA and MNP in 0.1 N NaOH generated an ESR spectrum consisting of a broad triplet (aN = 15.6 G) [23].
 

Analytical, diagnostic and therapeutic context of Tetrachlorosalicylanilide

  • We have developed an animal model to assess the ultraviolet A (UVA) protective effect of topical sunscreens with the use of BALB/cJ mice in which contact photosensitivity to 3, 3', 4', 5 tetrachlorosalicylanilide had been induced [24].

References

  1. The role of suppressor cells in the induction of murine photoallergic contact dermatitis and in its suppression by prior UVB irradiation. Granstein, R.D., Morison, W.L., Kripke, M.L. J. Immunol. (1983) [Pubmed]
  2. Substituted salicylanilides as inhibitors of two-component regulatory systems in bacteria. Macielag, M.J., Demers, J.P., Fraga-Spano, S.A., Hlasta, D.J., Johnson, S.G., Kanojia, R.M., Russell, R.K., Sui, Z., Weidner-Wells, M.A., Werblood, H., Foleno, B.D., Goldschmidt, R.M., Loeloff, M.J., Webb, G.C., Barrett, J.F. J. Med. Chem. (1998) [Pubmed]
  3. Dose response studies for UVA in contact photosensitivity to TCSA in the mouse. Brown, W.R., Ramsay, C.A., Shivji, G.M. Photo-dermatology. (1986) [Pubmed]
  4. Mechanisms of contact photosensitivity in mice. V. Persistent light reaction in mice. Miyachi, Y., Takigawa, M. Journal of clinical & laboratory immunology. (1985) [Pubmed]
  5. Mechanisms of contact photosensitivity in mice. IV. Antigen-specific suppressor T cells induced by preirradiation of photosensitizing site to UVB. Takigawa, M., Miyachi, Y., Toda, K., Yoshioka, A. J. Immunol. (1984) [Pubmed]
  6. Inhibitory effect of melanin pigment on sensitization and elicitation of murine contact photosensitivity: mechanism of low responsiveness in C57BL/10 background mice. Tokura, Y., Yagi, H., Satoh, T., Takigawa, M. J. Invest. Dermatol. (1993) [Pubmed]
  7. Increased number of dendritic cells in draining lymph nodes accompanies the generation of contact photosensitivity. Gerberick, G.F., Ryan, C.A., Fletcher, E.R., Howard, A.D., Robinson, M.K. J. Invest. Dermatol. (1991) [Pubmed]
  8. Experimental photoallergic contact dermatitis: a mouse model. Maguire, H.C., Kaidbey, K. J. Invest. Dermatol. (1982) [Pubmed]
  9. Photoallergic contact dermatitis from ketoprofen in southern Sweden. Hindsén, M., Zimerson, E., Bruze, M. Contact Derm. (2006) [Pubmed]
  10. Contact photoallergy testing of sunscreens in guinea pigs. Gerberick, G.F., Ryan, C.A. Contact Derm. (1989) [Pubmed]
  11. Characteristics and energy requirements of an alpha-aminoisobutyric acid transport system in Streptococcus lactis. Thompson, J. J. Bacteriol. (1976) [Pubmed]
  12. Evidence for a major strong binding site for tetrachlorosalicylanilide on human serum albumin. Rickwood, D.M., Barratt, M.D. Photochem. Photobiol. (1982) [Pubmed]
  13. ATPase-dependent energy spilling by the ruminal bacterium, Streptococcus bovis. Russell, J.B., Strobel, H.J. Arch. Microbiol. (1990) [Pubmed]
  14. Mechanisms of contact photosensitivity in mice: II. Langerhans cells are required for successful induction of contact photosensitivity to TCSA. Miyachi, Y., Takigawa, M. J. Invest. Dermatol. (1982) [Pubmed]
  15. Photohapten TCSA painting plus UVA irradiation of murine skin augments the expression of MHC class II molecules and CD86 on Langerhans cells. Nishijima, T., Tokura, Y., Imokawa, G., Takigawa, M. J. Dermatol. Sci. (1999) [Pubmed]
  16. Sodium ions and an energized membrane required by Methanosarcina barkeri for the oxidation of methanol to the level of formaldehyde. Blaut, M., Müller, V., Fiebig, K., Gottschalk, G. J. Bacteriol. (1985) [Pubmed]
  17. Studies on tetrachloroethene respiration in Dehalospirillum multivorans. Miller, E., Wohlfarth, G., Diekert, G. Arch. Microbiol. (1996) [Pubmed]
  18. Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria. Bott, M., Thauer, R.K. Eur. J. Biochem. (1987) [Pubmed]
  19. A modified murine local lymph node assay for the differentiation of contact photoallergy from phototoxicity by analysis of cytokine expression in skin-draining lymph node cells. Ulrich, P., Homey, B., Vohr, H.W. Toxicology (1998) [Pubmed]
  20. Induction of photoallergy in guinea-pigs by injection of photoallergen-protein conjugates. Barratt, M.D., Goodwin, B.F., Lovell, W.W. Int. Arch. Allergy Appl. Immunol. (1987) [Pubmed]
  21. Genetic control of contact photosensitivity to tetrachlorosalicylanilide. II. Igh complex controls the sensitivity induced by photohapten-modified spleen cells but not epidermal cells. Tokura, Y., Satoh, T., Yamada, M., Takigawa, M. Cell. Immunol. (1991) [Pubmed]
  22. Mechanisms of contact photosensitivity in mice: I. T cell regulation of contact photosensitivity to tetrachlorosalicylanilide under the genetic restrictions of the major histocompatibility complex. Takigawa, M., Miyachi, Y. J. Invest. Dermatol. (1982) [Pubmed]
  23. Spectroscopic studies of cutaneous photosensitizing agents--XIV. The spin trapping of free radicals formed during the photolysis of halogenated salicylanilide antibacterial agents. Chignell, C.F., Sik, R.H. Photochem. Photobiol. (1989) [Pubmed]
  24. Assessment by mouse model of the ultraviolet A protective effect of topical sunscreens. Furukawa, R.D., Brown, W.R., Shivji, G.M., Ramsay, C.A. J. Am. Acad. Dermatol. (1989) [Pubmed]
 
WikiGenes - Universities