The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Vanillic acid     4-hydroxy-3-methoxy-benzoic acid

Synonyms: Vanillate, p-Vanillate, PubChem19485, SureCN26179, CHEMBL120568, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Vanillic acid


High impact information on Vanillic acid


Chemical compound and disease context of Vanillic acid


Biological context of Vanillic acid

  • For this study, we isolated a 4.7-kb SmaI fragment that conferred on Escherichia coli the activity required for the conversion of vanillate to PCA [14].
  • Under these conditions, 1 mg (wet weight) of biomass produced 0.23 mg of vanillic acid per h [9].
  • Analysis of the genome context, operon arrangement, and regulation of the PhaK-like porin OpdK indicated that it might be involved in vanillate uptake [15].
  • Thirty-four thermophilic Bacillus sp. strains were isolated from decayed wood bark and a hot spring water sample based on their ability to degrade vanillic acid under thermophilic conditions [16].
  • Disruption of ligH resulted in the same phenotype as DC-49; its cell extract, however, was found to be able to convert vanillate and syringate in the presence of H(4)folate [17].

Anatomical context of Vanillic acid


Associations of Vanillic acid with other chemical compounds


Gene context of Vanillic acid


Analytical, diagnostic and therapeutic context of Vanillic acid


  1. Reduction of carboxylic acids by nocardia aldehyde oxidoreductase requires a phosphopantetheinylated enzyme. Venkitasubramanian, P., Daniels, L., Rosazza, J.P. J. Biol. Chem. (2007) [Pubmed]
  2. Urinary excretion of conjugated homovanillic acid, 3,4-dihydroxyphenylacetic acid, p-hydroxyphenylacetic acid, and vanillic acid by persons on their usual diet and patients with neuroblastoma. Muskiet, F.A., Groen, A. Clin. Chem. (1979) [Pubmed]
  3. Cloning and sequencing of Pseudomonas genes encoding vanillate demethylase. Brunel, F., Davison, J. J. Bacteriol. (1988) [Pubmed]
  4. Whole-cell bioconversion of vanillin to vanillic acid by Streptomyces viridosporus. Pometto, A.L., Crawford, D.L. Appl. Environ. Microbiol. (1983) [Pubmed]
  5. Substrate range and genetic analysis of Acinetobacter vanillate demethylase. Morawski, B., Segura, A., Ornston, L.N. J. Bacteriol. (2000) [Pubmed]
  6. Characterization of the oxidase activity in mammalian catalase. Vetrano, A.M., Heck, D.E., Mariano, T.M., Mishin, V., Laskin, D.L., Laskin, J.D. J. Biol. Chem. (2005) [Pubmed]
  7. Mechanisms of ferulic acid conversions to vanillic acid and guaiacol by Rhodotorula rubra. Huang, Z., Dostal, L., Rosazza, J.P. J. Biol. Chem. (1993) [Pubmed]
  8. Transition metal-catalyzed nonoxidative decarboxylation reactions. Liu, A., Zhang, H. Biochemistry (2006) [Pubmed]
  9. Bioconversion of ferulic acid into vanillic acid by means of a vanillate-negative mutant of Pseudomonas fluorescens strain BF13. Civolani, C., Barghini, P., Roncetti, A.R., Ruzzi, M., Schiesser, A. Appl. Environ. Microbiol. (2000) [Pubmed]
  10. The 4-oxalomesaconate hydratase gene, involved in the protocatechuate 4,5-cleavage pathway, is essential to vanillate and syringate degradation in Sphingomonas paucimobilis SYK-6. Hara, H., Masai, E., Katayama, Y., Fukuda, M. J. Bacteriol. (2000) [Pubmed]
  11. Formaldehyde fixation contributes to detoxification for growth of a nonmethylotroph, Burkholderia cepacia TM1, on vanillic acid. Mitsui, R., Kusano, Y., Yurimoto, H., Sakai, Y., Kato, N., Tanaka, M. Appl. Environ. Microbiol. (2003) [Pubmed]
  12. Biocatalytic synthesis of vanillin. Li, T., Rosazza, J.P. Appl. Environ. Microbiol. (2000) [Pubmed]
  13. Characterization of a vanillic acid non-oxidative decarboxylation gene cluster from Streptomyces sp. D7. Chow, K.T., Pope, M.K., Davies, J. Microbiology (Reading, Engl.) (1999) [Pubmed]
  14. A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6. Abe, T., Masai, E., Miyauchi, K., Katayama, Y., Fukuda, M. J. Bacteriol. (2005) [Pubmed]
  15. Role of the novel OprD family of porins in nutrient uptake in Pseudomonas aeruginosa. Tamber, S., Ochs, M.M., Hancock, R.E. J. Bacteriol. (2006) [Pubmed]
  16. Isolation and characterization of thermophilic bacilli degrading cinnamic, 4-coumaric, and ferulic acids. Peng, X., Misawa, N., Harayama, S. Appl. Environ. Microbiol. (2003) [Pubmed]
  17. A novel tetrahydrofolate-dependent O-demethylase gene is essential for growth of Sphingomonas paucimobilis SYK-6 with syringate. Masai, E., Sasaki, M., Minakawa, Y., Abe, T., Sonoki, T., Miyauchi, K., Katayama, Y., Fukuda, M. J. Bacteriol. (2004) [Pubmed]
  18. On the occurence of vanillic acid in human brain and cerebrospinal fluid. Ebinger, G., Verheyden, R. J. Neurol. (1976) [Pubmed]
  19. Transportation mechanism for vanillin uptake through fungal plasma membrane. Shimizu, M., Kobayashi, Y., Tanaka, H., Wariishi, H. Appl. Microbiol. Biotechnol. (2005) [Pubmed]
  20. Soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f.sp. cubense. de Ascensao, A.R., Dubery, I.A. Phytochemistry (2003) [Pubmed]
  21. Enhancement of fertilization by piperine in hamsters. Piyachaturawat, P., Pholpramool, C. Cell Biol. Int. (1997) [Pubmed]
  22. Urinary trans,trans-muconic acid determined by liquid chromatography: application in biological monitoring of benzene exposure. Lee, B.L., New, A.L., Kok, P.W., Ong, H.Y., Shi, C.Y., Ong, C.N. Clin. Chem. (1993) [Pubmed]
  23. Anaerobic degradation of veratrylglycerol-beta-guaiacyl ether and guaiacoxyacetic acid by mixed rumen bacteria. Chen, W., Supanwong, K., Ohmiya, K., Shimizu, S., Kawakami, H. Appl. Environ. Microbiol. (1985) [Pubmed]
  24. Microbial catabolism of vanillate: decarboxylation to guaiacol. Crawford, R.L., Olson, P.P. Appl. Environ. Microbiol. (1978) [Pubmed]
  25. Purification and characterization of a 1,2,4-trihydroxybenzene 1,2-dioxygenase from the basidiomycete Phanerochaete chrysosporium. Rieble, S., Joshi, D.K., Gold, M.H. J. Bacteriol. (1994) [Pubmed]
  26. Intracellular quinone reduction in Sporotrichum pulverulentum by a NAD(P)H:quinone oxidoreductase: possible role in vanillic acid catabolism. Buswell, J.A., Hamp, S., Eriksson, K.E. FEBS Lett. (1979) [Pubmed]
  27. Repression of Acinetobacter vanillate demethylase synthesis by VanR, a member of the GntR family of transcriptional regulators. Morawski, B., Segura, A., Ornston, L.N. FEMS Microbiol. Lett. (2000) [Pubmed]
  28. 1,4-benzoquinone reductase from Phanerochaete chrysosporium: cDNA cloning and regulation of expression. Akileswaran, L., Brock, B.J., Cereghino, J.L., Gold, M.H. Appl. Environ. Microbiol. (1999) [Pubmed]
  29. Structural analysis of ligand binding and catalysis in chorismate lyase. Smith, N., Roitberg, A.E., Rivera, E., Howard, A., Holden, M.J., Mayhew, M., Kaistha, S., Gallagher, D.T. Arch. Biochem. Biophys. (2006) [Pubmed]
  30. Purification, characterization, and gene cloning of 4-hydroxybenzoate decarboxylase of Enterobacter cloacae P240. Matsui, T., Yoshida, T., Hayashi, T., Nagasawa, T. Arch. Microbiol. (2006) [Pubmed]
  31. Acidic catecholamine metabolites and 5-hydroxyindoleacetic acid in urine: the influence of diet. Mashige, F., Matsushima, Y., Kanazawa, H., Sakuma, I., Takai, N., Bessho, F., Ohkubo, A. Ann. Clin. Biochem. (1996) [Pubmed]
  32. Reduction of 3-chlorobenzoate, 3-bromobenzoate, and benzoate to corresponding alcohols by Desulfomicrobium escambiense, isolated from a 3-chlorobenzoate-dechlorinating coculture. Genthner, B.R., Townsend, G.T., Blattmann, B.O. Appl. Environ. Microbiol. (1997) [Pubmed]
  33. Mass balance modeling of vanillin production from vanillic acid by cultures of the fungus Pycnoporus cinnabarinus in bioreactors. Bernard, O., Bastin, G., Stentelaire, C., Lesage-Meessen, L., Asther, M. Biotechnol. Bioeng. (1999) [Pubmed]
  34. Improved assay of reaction products to quantitate catechol-O-methyltransferase activity by high-performance liquid chromatography with electrochemical detection. Reenilä, I., Tuomainen, P., Männistö, P.T. J. Chromatogr. B, Biomed. Appl. (1995) [Pubmed]
WikiGenes - Universities