The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Homocatechol     4-methylbenzene-1,2-diol

Synonyms: SureCN12388, CHEMBL158766, CCRIS 3333, M34200_ALDRICH, AG-C-92079, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Homopyrocatechol


High impact information on Homopyrocatechol


Chemical compound and disease context of Homopyrocatechol


Biological context of Homopyrocatechol


Anatomical context of Homopyrocatechol


Associations of Homopyrocatechol with other chemical compounds


Gene context of Homopyrocatechol


Analytical, diagnostic and therapeutic context of Homopyrocatechol


  1. Promotion by dihydroxybenzene derivatives of N-methyl-N'-nitro-N-nitrosoguanidine-induced F344 rat forestomach and glandular stomach carcinogenesis. Hirose, M., Yamaguchi, S., Fukushima, S., Hasegawa, R., Takahashi, S., Ito, N. Cancer Res. (1989) [Pubmed]
  2. Cloning of the genes for and characterization of the early stages of toluene and o-xylene catabolism in Pseudomonas stutzeri OX1. Bertoni, G., Bolognese, F., Galli, E., Barbieri, P. Appl. Environ. Microbiol. (1996) [Pubmed]
  3. 4-methylcatechol increases brain-derived neurotrophic factor content and mRNA expression in cultured brain cells and in rat brain in vivo. Nitta, A., Ito, M., Fukumitsu, H., Ohmiya, M., Ito, H., Sometani, A., Nomoto, H., Furukawa, Y., Furukawa, S. J. Pharmacol. Exp. Ther. (1999) [Pubmed]
  4. Biological production of optically active muconolactones by Rhodococcus rhodochrous. Cha, C.J. Appl. Microbiol. Biotechnol. (2001) [Pubmed]
  5. In vivo reactivation of catechol 2,3-dioxygenase mediated by a chloroplast-type ferredoxin: a bacterial strategy to expand the substrate specificity of aromatic degradative pathways. Polissi, A., Harayama, S. EMBO J. (1993) [Pubmed]
  6. Capture of a labile substrate by expulsion of water molecules from the active site of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase (CobT) from Salmonella enterica. Cheong, C.G., Escalante-Semerena, J.C., Rayment, I. J. Biol. Chem. (2002) [Pubmed]
  7. The effect of substrate partitioning on the kinetics of enzymes acting in reverse micelles. Bru, R., Sánchez-Ferrer, A., García-Carmona, F. Biochem. J. (1990) [Pubmed]
  8. Synthesis and antitumor activity of cysteinyl-3,4-dihydroxyphenylalanines and related compounds. Ito, S., Inoue, S., Yamamoto, Y., Fujita, K. J. Med. Chem. (1981) [Pubmed]
  9. Isolation and characterization of polycyclic aromatic hydrocarbons-degrading Sphingomonas sp. strain ZL5. Liu, Y., Zhang, J., Zhang, Z. Biodegradation (2004) [Pubmed]
  10. A novel -2Fe-2S- ferredoxin from Pseudomonas putida mt2 promotes the reductive reactivation of catechol 2,3-dioxygenase. Hugo, N., Armengaud, J., Gaillard, J., Timmis, K.N., Jouanneau, Y. J. Biol. Chem. (1998) [Pubmed]
  11. 4-Methylcatechol stimulates phosphorylation of Trk family neurotrophin receptors and MAP kinases in cultured rat cortical neurons. Sometani, A., Nomoto, H., Nitta, A., Furukawa, Y., Furukawa, S. J. Neurosci. Res. (2002) [Pubmed]
  12. In vitro cytotoxicity of 4-methylcatechol in murine tumor cells: induction of apoptotic cell death by extracellular pro-oxidant action. Morita, K., Arimochi, H., Ohnishi, Y. J. Pharmacol. Exp. Ther. (2003) [Pubmed]
  13. Effect of 4-methylcatechol on sciatic nerve growth factor level and motor nerve conduction velocity in experimental diabetic neuropathic process in rats. Hanaoka, Y., Ohi, T., Furukawa, S., Furukawa, Y., Hayashi, K., Matsukura, S. Exp. Neurol. (1992) [Pubmed]
  14. Alkylcatechols regulate NGF gene expression in astroglial cells via both protein kinase C- and cAMP-independent mechanisms. Furukawa, Y., Furukawa, S., Omae, F., Awatsuji, H., Hayashi, K. J. Neurosci. Res. (1993) [Pubmed]
  15. 4-Methylcatechol, an inducer of nerve growth factor synthesis, enhances peripheral nerve regeneration across nerve gaps. Kaechi, K., Ikegami, R., Nakamura, N., Nakajima, M., Furukawa, Y., Furukawa, S. J. Pharmacol. Exp. Ther. (1995) [Pubmed]
  16. Pharmacological induction of physiologically active nerve growth factor in rat peripheral nervous system. Kaechi, K., Furukawa, Y., Ikegami, R., Nakamura, N., Omae, F., Hashimoto, Y., Hayashi, K., Furukawa, S. J. Pharmacol. Exp. Ther. (1993) [Pubmed]
  17. Possible tumor-initiating and -promoting activity of p-methylcatechol and methylhydroquinone in the pyloric mucosa of rat stomach. Furihata, C., Oguchi, S., Matsushima, T. Jpn. J. Cancer Res. (1993) [Pubmed]
  18. Induction of NGF by isoproterenol, 4-methylcatechol and serum occurs by three distinct mechanisms. Carswell, S., Hoffman, E.K., Clopton-Hartpence, K., Wilcox, H.M., Lewis, M.E. Brain Res. Mol. Brain Res. (1992) [Pubmed]
  19. Pathways for the degradation of m-cresol and p-cresol by Pseudomonas putida. Hopper, D.J., Taylor, D.G. J. Bacteriol. (1975) [Pubmed]
  20. beta-Ketoadipate pathway in Trichosporon cutaneum modified for methyl-substituted metabolites. Powlowski, J.B., Dagley, S. J. Bacteriol. (1985) [Pubmed]
  21. Characterization of the gene encoding catechol 2,3-dioxygenase from Achromobacter xylosoxidans KF701. Moon, J., Kang, E., Min, K.R., Kim, C.K., Min, K.H., Lee, K.S., Kim, Y. Biochem. Biophys. Res. Commun. (1997) [Pubmed]
  22. Latent polyphenol oxidases from sago log (Metroxylon sagu): partial purification, activation, and some properties. Onsa, G.H., bin Saari, N., Selamat, J., Bakar, J. J. Agric. Food Chem. (2000) [Pubmed]
  23. Development of a stable isotope dilution analysis with liquid chromatography-tandem mass spectrometry detection for the quantitative analysis of di- and trihydroxybenzenes in foods and model systems. Lang, R., Mueller, C., Hofmann, T. J. Agric. Food Chem. (2006) [Pubmed]
  24. p75NTR in the spleen: age-dependent changes, effect of NGF and 4-methylcatechol treatment, and structural changes in p75NTR-deficient mice. Pérez-Pérez, M., García-Suárez, O., Esteban, I., Germanà, A., Fariñas, I., Naves, F.J., Vega, J.A. The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology. (2003) [Pubmed]
  25. Construction of chimeric catechol 2,3-dioxygenase exhibiting improved activity against the suicide inhibitor 4-methylcatechol. Okuta, A., Ohnishi, K., Harayama, S. Appl. Environ. Microbiol. (2004) [Pubmed]
  26. Pharmacological induction of nerve growth factor mRNA in adult rat brain. Saporito, M.S., Wilcox, H.M., Hartpence, K.C., Lewis, M.E., Vaught, J.L., Carswell, S. Exp. Neurol. (1993) [Pubmed]
  27. Partial characterization of polyphenol oxidase activity in raspberry fruits. González, E.M., de Ancos, B., Cano, M.P. J. Agric. Food Chem. (1999) [Pubmed]
WikiGenes - Universities