The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

nahH  -  catechol 2,3-dioxygenase

Pseudomonas putida ND6

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of nahH

 

High impact information on nahH

 

Chemical compound and disease context of nahH

 

Biological context of nahH

  • The lapR gene is transcribed independently and encodes a member of the XylR/DmpR positive transcriptional regulators. lapB, the first gene in the lap operon, encodes catechol 2,3-dioxygenase (C23O) [13].
  • 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase [13].
  • Gene sequence conservation, highlighted by examining the phylogeny of Proteobacterial catechol 2,3-dioxygenase sequences, reveals that sequences generally cluster in a manner which correlates with the taxonomic grouping of the Proteobacterial subgroup from which they originated [14].
  • By site directed homologous recombination a KX cassette [kanamycin resistance (kanr) and catechol 2,3 dioxygenase (xylE)] and a ZY cassette [lactose utilization (lacZY, beta-galactosidase, lactose permease)] were introduced at least 1 Mbp apart on the 6.6 Mbp bacterial chromosome [15].
  • The inhibited regime resulted in a 60% lower growth yield, near constant levels of C23D monomer, but a 50% reduction in the specific activity of C23D, increased RNA synthesis rates (total and aniline pathway mRNA), and elevated RNA decay rates [16].
 

Associations of nahH with chemical compounds

 

Analytical, diagnostic and therapeutic context of nahH

References

  1. Cloning and sequencing of the catechol 2,3-dioxygenase gene of Alcaligenes sp. KF711. Moon, J., Chang, H., Min, K.R., Kim, Y. Biochem. Biophys. Res. Commun. (1995) [Pubmed]
  2. The role of the conserved residues His-246, His-199, and Tyr-255 in the catalysis of catechol 2,3-dioxygenase from Pseudomonas stutzeri OX1. Viggiani, A., Siani, L., Notomista, E., Birolo, L., Pucci, P., Di Donato, A. J. Biol. Chem. (2004) [Pubmed]
  3. The catechol 2,3-dioxygenase gene of Rhodococcus rhodochrous CTM: nucleotide sequence, comparison with isofunctional dioxygenases and evidence for an active-site histidine. Candidus, S., van Pée, K.H., Lingens, F. Microbiology (Reading, Engl.) (1994) [Pubmed]
  4. Characterization of the gene encoding catechol 2,3-dioxygenase from Achromobacter xylosoxidans KF701. Moon, J., Kang, E., Min, K.R., Kim, C.K., Min, K.H., Lee, K.S., Kim, Y. Biochem. Biophys. Res. Commun. (1997) [Pubmed]
  5. Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. Ramos, J.L., Wasserfallen, A., Rose, K., Timmis, K.N. Science (1987) [Pubmed]
  6. Study of Vitreoscilla globin (vgb) gene expression and promoter activity in E. coli through transcriptional fusion. Dikshit, K.L., Dikshit, R.P., Webster, D.A. Nucleic Acids Res. (1990) [Pubmed]
  7. Molecular characterization of an inducible gentisate 1,2-dioxygenase gene, xlnE, from Pseudomonas alcaligenes NCIMB 9867. Yeo, C.C., Wong, M.V., Feng, Y., Song, K.P., Poh, C.L. Gene (2003) [Pubmed]
  8. Organization and regulation of meta cleavage pathway genes for toluene and o-xylene derivative degradation in Pseudomonas stutzeri OX1. Arenghi, F.L., Berlanda, D., Galli, E., Sello, G., Barbieri, P. Appl. Environ. Microbiol. (2001) [Pubmed]
  9. TOM, a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepacia G4. Shields, M.S., Reagin, M.J., Gerger, R.R., Campbell, R., Somerville, C. Appl. Environ. Microbiol. (1995) [Pubmed]
  10. Nucleotide sequence and expression of the catechol 2,3-dioxygenase-encoding gene of phenol-catabolizing Pseudomonas CF600. Bartilson, M., Shingler, V. Gene (1989) [Pubmed]
  11. The lower pathway operon for benzoate catabolism in biphenyl-utilizing Pseudomonas sp. strain IC and the nucleotide sequence of the bphE gene for catechol 2,3-dioxygenase. Carrington, B., Lowe, A., Shaw, L.E., Williams, P.A. Microbiology (Reading, Engl.) (1994) [Pubmed]
  12. Preliminary study on relationships among strains forming a bacterial community selected on naphthalene from a marine sediment. Tagger, S., Truffaut, N., Le Petit, J. Can. J. Microbiol. (1990) [Pubmed]
  13. 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Jeong, J.J., Kim, J.H., Kim, C.K., Hwang, I., Lee, K. Microbiology (Reading, Engl.) (2003) [Pubmed]
  14. Conserved and hybrid meta-cleavage operons from PAH-degrading Burkholderia RP007. Laurie, A.D., Lloyd-Jones, G. Biochem. Biophys. Res. Commun. (1999) [Pubmed]
  15. Site directed chromosomal marking of a fluorescent pseudomonad isolated from the phytosphere of sugar beet; stability and potential for marker gene transfer. Bailey, M.J., Lilley, A.K., Thompson, I.P., Rainey, P.B., Ellis, R.J. Mol. Ecol. (1995) [Pubmed]
  16. Continuous culture dynamics for aniline metabolism by Pseudomonas sp. CIT1. Thomas, S.M., Peretti, S.W. Biotechnol. Bioeng. (1998) [Pubmed]
  17. New naphthalene-degrading marine Pseudomonas strains. García-Valdés, E., Cozar, E., Rotger, R., Lalucat, J., Ursing, J. Appl. Environ. Microbiol. (1988) [Pubmed]
  18. Cloning of cmpE, a plasmid-borne catechol 2,3-dioxygenase-encoding gene from the aromatic- and chloroaromatic-degrading Pseudomonas sp. HV3. Yrjälä, K., Paulin, L., Kilpi, S., Romantschuk, M. Gene (1994) [Pubmed]
  19. Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene. Shields, M.S., Montgomery, S.O., Cuskey, S.M., Chapman, P.J., Pritchard, P.H. Appl. Environ. Microbiol. (1991) [Pubmed]
  20. Simultaneous biodegradation of chlorobenzene and toluene by a Pseudomonas strain. Pettigrew, C.A., Haigler, B.E., Spain, J.C. Appl. Environ. Microbiol. (1991) [Pubmed]
  21. Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR. Mesarch, M.B., Nakatsu, C.H., Nies, L. Appl. Environ. Microbiol. (2000) [Pubmed]
  22. Molecular cloning and expression of a novel catechol 2,3-dioxygenase gene from the benzoate meta-cleavage pathway in Azotobacter vinelandii. Keil, H. J. Gen. Microbiol. (1990) [Pubmed]
  23. Mass spectrometric mapping of the enzymes involved in the phenol degradation of an indigenous soil pseudomonad. Tsirogianni, I., Aivaliotis, M., Karas, M., Tsiotis, G. Biochim. Biophys. Acta (2004) [Pubmed]
 
WikiGenes - Universities