The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AGN-PC-007JIQ     methyl-triphenyl-phosphanium

Synonyms: AG-K-01819, BBL002492, CTK1H5846, STK386899, AR-1J6749, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of methyl-triphenyl-phosphanium

 

High impact information on methyl-triphenyl-phosphanium

 

Chemical compound and disease context of methyl-triphenyl-phosphanium

 

Biological context of methyl-triphenyl-phosphanium

 

Anatomical context of methyl-triphenyl-phosphanium

 

Associations of methyl-triphenyl-phosphanium with other chemical compounds

 

Gene context of methyl-triphenyl-phosphanium

 

Analytical, diagnostic and therapeutic context of methyl-triphenyl-phosphanium

References

  1. Reduction of membrane potential, an immediate effect of colicin K. Weiss, M.J., Luria, S.E. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  2. Uptake and toxicity of safranine and triphenylmethylphosphonium ion in human tumour cells. Parsons, P.G., Musk, P. The Australian journal of experimental biology and medical science. (1983) [Pubmed]
  3. Membrane potential of Plasmodium-infected erythrocytes. Mikkelsen, R.B., Tanabe, K., Wallach, D.F. J. Cell Biol. (1982) [Pubmed]
  4. Bacterial multidrug resistance is due to a single membrane protein which functions as a drug pump. Grinius, L.L., Goldberg, E.B. J. Biol. Chem. (1994) [Pubmed]
  5. Non-ohmic proton conductance of the mitochondrial inner membrane in hepatocytes. Nobes, C.D., Brown, G.C., Olive, P.N., Brand, M.D. J. Biol. Chem. (1990) [Pubmed]
  6. Expression of the mammalian mitochondrial genome. Stability of mitochondrial translation products as a function of membrane potential. Côté, C., Poirier, J., Boulet, D. J. Biol. Chem. (1989) [Pubmed]
  7. Evidence that thyrotropin-releasing hormone transiently decreases membrane potential in mouse pituitary thyrotropic tumor cells in culture as monitored by triphenylmethylphosphonium ion. Gershengorn, M.C., Geras, E., Rebecchi, M.J., Rubin, B.G. J. Biol. Chem. (1981) [Pubmed]
  8. Requirement for membrane potential in active transport of glutamine by Escherichia coli. Plate, C.A. J. Bacteriol. (1979) [Pubmed]
  9. Use of lipophilic cation-permeable mutants for measurement of transmembrane electrical potential in metabolizing cells of Escherichia coli. Hirota, N., Matsuura, S., Mochizuki, N., Mutoh, N., Imae, Y. J. Bacteriol. (1981) [Pubmed]
  10. Sensory electrophysiology of bacteria: relationship of the membrane potential to motility and chemotaxis in Bacillus subtilis. Miller, J.B., Koshland, D.E. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  11. Flow-force relationships in mitochondrial oxidative phosphorylation. Woelders, H., Putters, J., van Dam, K. FEBS Lett. (1986) [Pubmed]
  12. Determination of the mitochondrial protonmotive force in isolated hepatocytes. Hoek, J.B., Nicholls, D.G., Williamson, J.R. J. Biol. Chem. (1980) [Pubmed]
  13. Measurement of membrane potential of chromaffin granules by the accumulation of triphenylmethylphosphonium cation. Holz, R.W. J. Biol. Chem. (1979) [Pubmed]
  14. Triphenylmethylphosphonium uptake by pancreatic islet cells. Sehlin, J., Täljedal, I.B. Exp. Cell Res. (1981) [Pubmed]
  15. Energy transduction in intact synaptosomes. Influence of plasma-membrane depolarization on the respiration and membrane potential of internal mitochondria determined in situ. Scott, I.D., Nicholls, D.G. Biochem. J. (1980) [Pubmed]
  16. Thermosensitivity of the membrane potential of normal and simian virus 40-transformed hamster lymphocytes. Mikkelsen, R.B., Koch, B. Cancer Res. (1981) [Pubmed]
  17. Light-induced membrane potential and pH gradient in Halobacterium halobium envelope vesicles. Renthal, R., Lanyi, J.K. Biochemistry (1976) [Pubmed]
  18. Early plasma-membrane-potential changes during stimulation of lymphocytes by concanavalin A. Felber, S.M., Brand, M.D. Biochem. J. (1983) [Pubmed]
  19. Use of 11C-triphenylmethylphosphonium for the evaluation of membrane potential in the heart by positron-emission tomography. Fukuda, H., Syrota, A., Charbonneau, P., Vallois, J., Crouzel, M., Prenant, C., Sastre, J., Crouzel, C. European journal of nuclear medicine. (1986) [Pubmed]
  20. Role of ions and membrane potential in uptake of serotonin into plasma membrane vesicles from mouse brain. Reith, M.E., Zimanyi, I., O'Reilly, C.A. Biochem. Pharmacol. (1989) [Pubmed]
  21. Triphenylmethylphosphonium cation distribution as a measure of hormone-induced alterations in white adipocyte membrane potential. Vallano, M.L., Sonenberg, M. J. Membr. Biol. (1982) [Pubmed]
  22. Ultraviolet radiation induces a change in cell membrane potential in vitro: a possible signal for ultraviolet radiation induced alteration in cell activity. Gallo, R.L., Kochevar, I.E., Granstein, R.D. Photochem. Photobiol. (1989) [Pubmed]
  23. Investigation of proton conductance in liver mitochondria of broilers with pulmonary hypertension syndrome. Cawthon, D., Iqbal, M., Brand, J., McNew, R., Bottje, W.G. Poult. Sci. (2004) [Pubmed]
  24. Mitochondrial transmembrane potential and pH gradient during anoxia. Andersson, B.S., Aw, T.Y., Jones, D.P. Am. J. Physiol. (1987) [Pubmed]
  25. Alternative methods for measurement of membrane potentials in epithelia. Leader, J.P., Macknight, A.D. Fed. Proc. (1982) [Pubmed]
 
WikiGenes - Universities