The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Cd36  -  CD36 molecule (thrombospondin receptor)

Rattus norvegicus

Synonyms: Adipocyte membrane protein, Fat, Fatty acid translocase, Fatty acid transport protein, GPIIIB, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Cd36

  • Our results provide direct evidence that Cd36 deficiency can promote defective insulin action and disordered fatty-acid metabolism in spontaneous hypertension [1].
  • Transgenic rescue of Cd36 in SHR ameliorates insulin resistance and improves dyslipidemia [2].
  • BN-Il6/Npy congenic strain, we have found that transfer of a segment of chromosome 4 (including Cd36) from the Brown Norway (BN) rat onto the SHR background induces reductions in blood pressure and ameliorates dietary-induced glucose intolerance, hyperinsulinemia, and hypertriglyceridemia [3].
  • Thus, in obesity, alterations in fatty acid transport in metabolically important tissues are not associated with changes in fatty acid transporter mRNAs or altered fatty acid transport protein expression but with their increased abundance at the plasma membrane [4].
  • Treatment with the PPARalpha agonist resulted in LV hypertrophy (24% increase in LV/body mass ratio) and induced mRNAs encoding for PPARalpha-regulated genes, as well as protein expression and activity of medium chain acyl-CoA dehydrogenase (compared with INF and INF + Fat groups) [5].

High impact information on Cd36


Chemical compound and disease context of Cd36

  • Myocardial triglyceride was unaffected by infarction but increased in the INF + Fat group [5].
  • Angiotensin II Receptor Blockers Downsize Adipocytes in Spontaneously Type 2 Diabetic Rats With Visceral Fat Obesity [8].
  • The uptake of plasma linoleic acid and its metabolism to 13-HODE by rat hepatoma 7288CTC, which expresses both fatty acid transport protein and melatonin receptors, is inhibited by melatonin in a circadian-dependent manner [9].
  • Fatty acid transport was restored by addition of any of the following: a melatonin receptor antagonist (S 20928, 1.0 nM), pertussis toxin (0.5 microg/ml), forskolin (1 microM) or 8-Br-cAMP (10 microM) [10].

Biological context of Cd36


Anatomical context of Cd36


Associations of Cd36 with chemical compounds


Regulatory relationships of Cd36

  • In the current studies, we developed two new SHR transgenic lines, which express wild type Cd36 under the control of the universal Ef-1 alpha promoter, and examined the effects of transgenic expression of wild type Cd36 on selected metabolic and cardiovascular phenotypes [2].

Other interactions of Cd36


Analytical, diagnostic and therapeutic context of Cd36


  1. Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Pravenec, M., Landa, V., Zidek, V., Musilova, A., Kren, V., Kazdova, L., Aitman, T.J., Glazier, A.M., Ibrahimi, A., Abumrad, N.A., Qi, N., Wang, J.M., St Lezin, E.M., Kurtz, T.W. Nat. Genet. (2001) [Pubmed]
  2. Transgenic expression of CD36 in the spontaneously hypertensive rat is associated with amelioration of metabolic disturbances but has no effect on hypertension. Pravenec, M., Landa, V., Zídek, V., Musilová, A., Kazdová, L., Qi, N., Wang, J., St Lezin, E., Kurtz, T.W. Physiological research / Academia Scientiarum Bohemoslovaca. (2003) [Pubmed]
  3. Genetics of Cd36 and the clustering of multiple cardiovascular risk factors in spontaneous hypertension. Pravenec, M., Zidek, V., Simakova, M., Kren, V., Krenova, D., Horky, K., Jachymova, M., Mikova, B., Kazdova, L., Aitman, T.J., Churchill, P.C., Webb, R.C., Hingarh, N.H., Yang, Y., Wang, J.M., Lezin, E.M., Kurtz, T.W. J. Clin. Invest. (1999) [Pubmed]
  4. Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. Luiken, J.J., Arumugam, Y., Dyck, D.J., Bell, R.C., Pelsers, M.M., Turcotte, L.P., Tandon, N.N., Glatz, J.F., Bonen, A. J. Biol. Chem. (2001) [Pubmed]
  5. Effects of chronic activation of peroxisome proliferator-activated receptor-alpha or high-fat feeding in a rat infarct model of heart failure. Morgan, E.E., Rennison, J.H., Young, M.E., McElfresh, T.A., Kung, T.A., Tserng, K.Y., Hoit, B.D., Stanley, W.C., Chandler, M.P. Am. J. Physiol. Heart Circ. Physiol. (2006) [Pubmed]
  6. Intracisternal injection of apolipoprotein A-IV inhibits gastric secretion in pylorus-ligated conscious rats. Okumura, T., Fukagawa, K., Tso, P., Taylor, I.L., Pappas, T.N. Gastroenterology (1994) [Pubmed]
  7. Efficiency of utilization of various sources of energy for growth. Donato, K., Hegsted, D.M. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  8. Angiotensin II Receptor Blockers Downsize Adipocytes in Spontaneously Type 2 Diabetic Rats With Visceral Fat Obesity. Mori, Y., Itoh, Y., Tajima, N. Am. J. Hypertens. (2007) [Pubmed]
  9. New actions of melatonin on tumor metabolism and growth. Blask, D.E., Sauer, L.A., Dauchy, R., Holowachuk, E.W., Ruhoff, M.S. Biological signals and receptors. (1999) [Pubmed]
  10. Melatonin inhibits fatty acid transport in inguinal fat pads of hepatoma 7288CTC-bearing and normal Buffalo rats via receptor-mediated signal transduction. Sauer, L.A., Dauchy, R.T., Blask, D.E. Life Sci. (2001) [Pubmed]
  11. Evaluation of insulin resistance linkage to rat chromosome 4 in SHR of a Japanese colony. Watanabe, T., Iizuka, Y., Liang, Y.Q., Inomata, H., Gotoda, T., Yanai, K., Isobe, M., Kato, N. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  12. Protein-mediated palmitate uptake and expression of fatty acid transport proteins in heart giant vesicles. Luiken, J.J., Turcotte, L.P., Bonen, A. J. Lipid Res. (1999) [Pubmed]
  13. Gut expression and regulation of FAT/CD36: possible role in fatty acid transport in rat enterocytes. Chen, M., Yang, Y., Braunstein, E., Georgeson, K.E., Harmon, C.M. Am. J. Physiol. Endocrinol. Metab. (2001) [Pubmed]
  14. Fatty acid transport regulatory proteins in the developing rat placenta and in trophoblast cell culture models. Knipp, G.T., Liu, B., Audus, K.L., Fujii, H., Ono, T., Soares, M.J. Placenta (2000) [Pubmed]
  15. A novel function for fatty acid translocase (FAT)/CD36: involvement in long chain fatty acid transfer into the mitochondria. Campbell, S.E., Tandon, N.N., Woldegiorgis, G., Luiken, J.J., Glatz, J.F., Bonen, A. J. Biol. Chem. (2004) [Pubmed]
  16. Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Luiken, J.J., Coort, S.L., Willems, J., Coumans, W.A., Bonen, A., van der Vusse, G.J., Glatz, J.F. Diabetes (2003) [Pubmed]
  17. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Aitman, T.J., Glazier, A.M., Wallace, C.A., Cooper, L.D., Norsworthy, P.J., Wahid, F.N., Al-Majali, K.M., Trembling, P.M., Mann, C.J., Shoulders, C.C., Graf, D., St Lezin, E., Kurtz, T.W., Kren, V., Pravenec, M., Ibrahimi, A., Abumrad, N.A., Stanton, L.W., Scott, J. Nat. Genet. (1999) [Pubmed]
  18. Pharmacogenetic evidence that cd36 is a key determinant of the metabolic effects of pioglitazone. Qi, N., Kazdova, L., Zidek, V., Landa, V., Kren, V., Pershadsingh, H.A., Lezin, E.S., Abumrad, N.A., Pravenec, M., Kurtz, T.W. J. Biol. Chem. (2002) [Pubmed]
  19. Uptake of long chain free fatty acids is selectively up-regulated in adipocytes of Zucker rats with genetic obesity and non-insulin-dependent diabetes mellitus. Berk, P.D., Zhou, S.L., Kiang, C.L., Stump, D., Bradbury, M., Isola, L.M. J. Biol. Chem. (1997) [Pubmed]
  20. Chronic leptin administration decreases fatty acid uptake and fatty acid transporters in rat skeletal muscle. Steinberg, G.R., Dyck, D.J., Calles-Escandon, J., Tandon, N.N., Luiken, J.J., Glatz, J.F., Bonen, A. J. Biol. Chem. (2002) [Pubmed]
  21. Bezafibrate reduces mRNA levels of adipocyte markers and increases fatty acid oxidation in primary culture of adipocytes. Cabrero A, n.u.l.l., Alegret, M., Sánchez, R.M., Adzet, T., Laguna, J.C., Vázquez, M. Diabetes (2001) [Pubmed]
  22. Long-chain fatty acid-induced changes in gene expression in neonatal cardiac myocytes. van der Lee, K.A., Vork, M.M., De Vries, J.E., Willemsen, P.H., Glatz, J.F., Reneman, R.S., Van der Vusse, G.J., Van Bilsen, M. J. Lipid Res. (2000) [Pubmed]
  23. Fatty acid oxidation and related gene expression in heart depleted of carnitine by mildronate treatment in the rat. Degrace, P., Demizieux, L., Gresti, J., Tsoko, M., André, A., Demaison, L., Clouet, P. Mol. Cell. Biochem. (2004) [Pubmed]
  24. Localization of mRNA for fatty acid transport protein in developing and mature brain of rats. Utsunomiya, A., Owada, Y., Yoshimoto, T., Kondo, H. Brain Res. Mol. Brain Res. (1997) [Pubmed]
  25. Fatty acid translocase/CD36 mediates the uptake of palmitate by type II pneumocytes. Guthmann, F., Haupt, R., Looman, A.C., Spener, F., Rüstow, B. Am. J. Physiol. (1999) [Pubmed]
  26. Does Cd36 gene play a key role in disturbed glucose and fatty acid metabolism in Prague hypertensive hypertriglyceridemic rats? Kadlecová, M., Cejka, J., Zicha, J., Kunes, J. Physiological research / Academia Scientiarum Bohemoslovaca. (2004) [Pubmed]
WikiGenes - Universities