The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

c1546  -  repressor protein

Escherichia coli CFT073

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of c1546

 

High impact information on c1546

  • Regulation of transcription initiation is generally attributable to activator/repressor proteins that bind to specific DNA sequences [6].
  • We consider an example of an SOS repair system, and computationally infer the regulator activity of its master repressor, LexA [7].
  • In this work, a structure determined by x-ray crystallography of a complex of the repressor bound to biotin, which also functions as an activator of DNA binding by the biotin repressor (BirA), is described [8].
  • The results suggest that the corepressor of BirA causes a disorder-to-order transition that is a prerequisite to repressor dimerization and DNA binding [8].
  • ArsD is a trans-acting repressor of the arsRDABC operon that confers resistance to arsenicals and antimonials in Escherichia coli [9].
 

Chemical compound and disease context of c1546

 

Biological context of c1546

  • Repressor titration: a novel system for selection and stable maintenance of recombinant plasmids [14].
  • MALDI-TOF mass analysis identified it with IscR, known to serve as a repressor of the iscRSUA gene expression under anaerobic condition as a [2Fe-2S]-bound form [15].
  • Repressor binding to the fluorescein-labeled hairpin 20mer was compared with binding to a rhodamine-labeled 36 base-pair oligonucleotide bearing two inverted structural half-sites GNACT separated by an eight base-pair spacer containing none of the natural intervening sequence [16].
  • Both purified CysK and CymR, the global repressor of cysteine metabolism, were required to observe the formation of a protein-DNA complex with the yrrT promoter region in gel-shift experiments [17].
  • At the gadA promoter this regulatory element overlaps one of the binding sites of the repressor H-NS [18].
 

Associations of c1546 with chemical compounds

  • Repressor cysteines are reactive toward these reagents in the order cysteine 140 greater than or equal to cysteine 107 greater than cysteine 281 [19].
  • Mutations inactivating the Mnt repressor are recessive while those destroying operator recognition (Oc) are dominant in conferring tetracycline resistance on the host [20].
  • Deletion of fdsR revealed a dual regulatory effect of FdsR on the fds operon by acting as transcriptional activator in the presence of formate or as repressor in the absence of formate [21].
  • Glucose is a catabolite repressor of sporulation by C. perfringens [22].
  • Among others, two major regulators, the repressor Mlc and the cyclic AMP-cyclic AMP receptor protein activator complex, have been identified [23].
 

Analytical, diagnostic and therapeutic context of c1546

References

  1. Tracking of controlled Escherichia coli replication fork stalling and restart at repressor-bound DNA in vivo. Possoz, C., Filipe, S.R., Grainge, I., Sherratt, D.J. EMBO J. (2006) [Pubmed]
  2. Coordinated Regulation of the Neisseria gonorrhoeae-truncated Denitrification Pathway by the Nitric Oxide-sensitive Repressor, NsrR, and Nitrite-insensitive NarQ-NarP. Overton, T.W., Whitehead, R., Li, Y., Snyder, L.A., Saunders, N.J., Smith, H., Cole, J.A. J. Biol. Chem. (2006) [Pubmed]
  3. LfrR Is a Repressor That Regulates Expression of the Efflux Pump LfrA in Mycobacterium smegmatis. Buroni, S., Manina, G., Guglierame, P., Pasca, M.R., Riccardi, G., De Rossi, E. Antimicrob. Agents Chemother. (2006) [Pubmed]
  4. Cloning and characterization of SmeT, a repressor of the Stenotrophomonas maltophilia multidrug efflux pump SmeDEF. Sánchez, P., Alonso, A., Martinez, J.L. Antimicrob. Agents Chemother. (2002) [Pubmed]
  5. Comparison of the RpoH-dependent regulon and general stress response in Neisseria gonorrhoeae. Gunesekere, I.C., Kahler, C.M., Powell, D.R., Snyder, L.A., Saunders, N.J., Rood, J.I., Davies, J.K. J. Bacteriol. (2006) [Pubmed]
  6. rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase. Haugen, S.P., Berkmen, M.B., Ross, W., Gaal, T., Ward, C., Gourse, R.L. Cell (2006) [Pubmed]
  7. Reconstructing repressor protein levels from expression of gene targets in Escherichia coli. Khanin, R., Vinciotti, V., Wit, E. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  8. Corepressor-induced organization and assembly of the biotin repressor: a model for allosteric activation of a transcriptional regulator. Weaver, L.H., Kwon, K., Beckett, D., Matthews, B.W. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  9. Evidence for cooperativity between the four binding sites of dimeric ArsD, an As(III)-responsive transcriptional regulator. Li, S., Rosen, B.P., Borges-Walmsley, M.I., Walmsley, A.R. J. Biol. Chem. (2002) [Pubmed]
  10. Coordinate Expression of the Acetyl Coenzyme A Carboxylase Genes, accB and accC, Is Necessary for Normal Regulation of Biotin Synthesis in Escherichia coli. Abdel-Hamid, A.M., Cronan, J.E. J. Bacteriol. (2007) [Pubmed]
  11. Repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K-12: primary structure and identification of the DNA-binding domain. Zeng, G., Ye, S., Larson, T.J. J. Bacteriol. (1996) [Pubmed]
  12. Differential DNA binding of transcriptional regulator PcaU from Acinetobacter sp. strain ADP1. Popp, R., Kohl, T., Patz, P., Trautwein, G., Gerischer, U. J. Bacteriol. (2002) [Pubmed]
  13. Implication of a repression system, homologous to those of other bacteria, in the control of arginine biosynthesis genes in Streptomyces coelicolor. Soutar, A., Baumberg, S. Mol. Gen. Genet. (1996) [Pubmed]
  14. Repressor titration: a novel system for selection and stable maintenance of recombinant plasmids. Williams, S.G., Cranenburgh, R.M., Weiss, A.M., Wrighton, C.J., Sherratt, D.J., Hanak, J.A. Nucleic Acids Res. (1998) [Pubmed]
  15. IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins. Yeo, W.S., Lee, J.H., Lee, K.C., Roe, J.H. Mol. Microbiol. (2006) [Pubmed]
  16. Affinity and specificity of trp repressor-DNA interactions studied with fluorescent oligonucleotides. Reedstrom, R.J., Brown, M.P., Grillo, A., Roen, D., Royer, C.A. J. Mol. Biol. (1997) [Pubmed]
  17. Conversion of Methionine to Cysteine in Bacillus subtilis and Its Regulation. Hullo, M.F., Auger, S., Soutourina, O., Barzu, O., Yvon, M., Danchin, A., Martin-Verstraete, I. J. Bacteriol. (2007) [Pubmed]
  18. Mechanisms of Transcription Activation Exerted by GadX and GadW at the gadA and gadBC Gene Promoters of the Glutamate-Based Acid Resistance System in Escherichia coli. Tramonti, A., De Canio, M., Delany, I., Scarlato, V., De Biase, D. J. Bacteriol. (2006) [Pubmed]
  19. Chemical modification of lactose repressor protein using N-substituted maleimides. Brown, R.D., Matthews, K.S. J. Biol. Chem. (1979) [Pubmed]
  20. Role of plasmid multimers in mutation to tetracycline resistance. Boe, L., Marinus, M.G. Mol. Microbiol. (1991) [Pubmed]
  21. Dual control by regulatory gene fdsR of the fds operon encoding the NAD+-linked formate dehydrogenase of Ralstonia eutropha. Oh, J.I., Bowien, B. Mol. Microbiol. (1999) [Pubmed]
  22. The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens. Varga, J., Stirewalt, V.L., Melville, S.B. J. Bacteriol. (2004) [Pubmed]
  23. YeeI, a novel protein involved in modulation of the activity of the glucose-phosphotransferase system in Escherichia coli K-12. Becker, A.K., Zeppenfeld, T., Staab, A., Seitz, S., Boos, W., Morita, T., Aiba, H., Mahr, K., Titgemeyer, F., Jahreis, K. J. Bacteriol. (2006) [Pubmed]
  24. Repression and catabolite repression of the lactose operon of Staphylococcus aureus. Oskouian, B., Stewart, G.C. J. Bacteriol. (1990) [Pubmed]
  25. Toxin-antitoxin regulation: bimodal interaction of YefM-YoeB with paired DNA palindromes exerts transcriptional autorepression. Kedzierska, B., Lian, L.Y., Hayes, F. Nucleic Acids Res. (2007) [Pubmed]
 
WikiGenes - Universities