The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

thyA  -  thymidylate synthase

Escherichia coli CFT073

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of thyA

  • Finally, by applying the target-site recognition rules, we show that the L1.LtrB intron can be modified to insert at new sites in a plasmid-borne thyA gene in Escherichia coli [1].
  • By regulating expression of this gene from the phage lambda pL promoter within pKC30 in a thyA host containing a temperature-sensitive lambda repressor, the T4 synthetase could be amplified about 200-fold over that after T4 infection [2].
  • We show here that the mutant prophage Mu gem2ts can excise precisely from at least three separate loci -- malT, lac and thyA (selected as Mal+, Lac+ and Thy+, respectively) [3].
  • The kanamycin-resistance gene was also deleted from pK184 and was replaced with Salmonella typhimurium thyA [4].
  • Haemocin, a bacteriocin produced by Haemophilus influenzae b, caused pronounced cell elongation of the sensitive strains H. influenzae Rd and Escherichia coli CR34 thyA [5].
 

High impact information on thyA

  • The amino-terminal sequence of thymidylate synthase (5,10-methylenetetrahydrofolate:dUMP C-methyltransferase, EC 2.1.1.45), the product of the thyA gene, located the 792-base-pair open reading frame, which codes for the 264 amino acid residues of this enzyme [6].
  • The nucleotide sequence of a 1,163-base-pair fragment that encodes the entire thyA gene of Escherichia coli K-12 was determined [6].
  • Production of H(4)folate rather than H(2)folate, as in the classical thymidylate synthase reaction, eliminates the need for dihydrofolate reductase, explaining the trimethoprim-resistant phenotype displayed by thyA(-) E. coli-expressing CTThyX [7].
  • In contrast to the extensively characterized thyA-encoded thymidylate synthases, which form a ternary complex with substrates dUMP and CH(2)H(4)folate and follow an ordered sequential mechanism, CTThyX follows a ping-pong kinetic mechanism involving a methyl enzyme intermediate [7].
  • Because both wild type and thymidylate synthase-deficient phenotypes are selectable on the appropriate growth medium, these thyA mutants could be used for genetic selections of protease inhibitors and analysis of protease specificities [8].
 

Chemical compound and disease context of thyA

 

Biological context of thyA

 

Associations of thyA with chemical compounds

  • Similarly, the binding of dUMP by F3-TS was greatly diminished relative to thyA-TS, but its binding as well as that of FdUMP could be improved by the presence of either the folate substrate or a tight binding folate analogue, 10-propargyl-5,8-dideazafolate (PDDF) [16].
  • We also deleted the thyA gene from this strain, rendering it thymine dependent [4].
  • This plasmid will permit growth of thyA mutant strains in the absence of thymidine or thymine and has a number of unique restriction sites which can be used for cloning [13].
  • The selected L. acidophilus DOM La strain carries a mutated thyA gene and has an obligate requirement for thymidine [17].
  • Portions of the genomes (including the tnaA and thyA genes, the trp operon, and one other unassigned segment) appear to have evolved in concert with the genome as a whole [18].
 

Analytical, diagnostic and therapeutic context of thyA

References

  1. Rules for DNA target-site recognition by a lactococcal group II intron enable retargeting of the intron to specific DNA sequences. Mohr, G., Smith, D., Belfort, M., Lambowitz, A.M. Genes Dev. (2000) [Pubmed]
  2. Purification and properties of T4 phage thymidylate synthetase produced by the cloned gene in an amplification vector. Belfort, M., Moelleken, A., Maley, G.F., Maley, F. J. Biol. Chem. (1983) [Pubmed]
  3. A novel illegitimate recombination event: precise excision and reintegration with the Mu gem mutant prophage. Ghelardini, P., Liébart, J.C., Di Zenzo, G., Micheli, G., D'Ari, R., Paolozzi, L. Mol. Microbiol. (1994) [Pubmed]
  4. Refinement of a therapeutic Shiga toxin-binding probiotic for human trials. Pinyon, R.A., Paton, J.C., Paton, A.W., Botten, J.A., Morona, R. J. Infect. Dis. (2004) [Pubmed]
  5. Mode of action of the Haemophilus bactericidal factor. Streker, R.G., Venezia, R.A., Robertson, R.G. Antimicrob. Agents Chemother. (1978) [Pubmed]
  6. Primary structure of the Escherichia coli thyA gene and its thymidylate synthase product. Belfort, M., Maley, G., Pedersen-Lane, J., Maley, F. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  7. Catalytic mechanism of Chlamydia trachomatis flavin-dependent thymidylate synthase. Griffin, J., Roshick, C., Iliffe-Lee, E., McClarty, G. J. Biol. Chem. (2005) [Pubmed]
  8. Conversion of thymidylate synthase into an HIV protease substrate. Kupiec, J.J., Hazebrouck, S., Leste-Lasserre, T., Sonigo, P. J. Biol. Chem. (1996) [Pubmed]
  9. Cis and trans-acting effects on a mutational hotspot involving a replication template switch. Dutra, B.E., Lovett, S.T. J. Mol. Biol. (2006) [Pubmed]
  10. The Escherichia coli mazEF suicide module mediates thymineless death. Sat, B., Reches, M., Engelberg-Kulka, H. J. Bacteriol. (2003) [Pubmed]
  11. FolM, a new chromosomally encoded dihydrofolate reductase in Escherichia coli. Giladi, M., Altman-Price, N., Levin, I., Levy, L., Mevarech, M. J. Bacteriol. (2003) [Pubmed]
  12. Function and evolution of plasmid-borne genes for pyrimidine biosynthesis in Borrelia spp. Zhong, J., Skouloubris, S., Dai, Q., Myllykallio, H., Barbour, A.G. J. Bacteriol. (2006) [Pubmed]
  13. Thymidylate synthase gene from Lactococcus lactis as a genetic marker: an alternative to antibiotic resistance genes. Ross, P., O'Gara, F., Condon, S. Appl. Environ. Microbiol. (1990) [Pubmed]
  14. Construction of plasmid vectors with a non-antibiotic selection system based on the Escherichia coli thyA+ gene: application to cholera vaccine development. Morona, R., Yeadon, J., Considine, A., Morona, J.K., Manning, P.A. Gene (1991) [Pubmed]
  15. Cloning and characterization of the thymidylate synthase gene from Lactococcus lactis subsp. lactis. Ross, P., O'Gara, F., Condon, S. Appl. Environ. Microbiol. (1990) [Pubmed]
  16. Properties of a defined mutant of Escherichia coli thymidylate synthase. Maley, G.F., Maley, F. J. Biol. Chem. (1988) [Pubmed]
  17. Development of a chromosome-plasmid balanced lethal system for Lactobacillus acidophilus with thyA gene as selective marker. Fu, X., Xu, J.G. Microbiol. Immunol. (2000) [Pubmed]
  18. Conservation and variation of nucleotide sequences within related bacterial genomes: enterobacteria. Riley, M., Anilionis, A. J. Bacteriol. (1980) [Pubmed]
  19. Molecular cloning of the wild-type and mutant thyA gene from Shigella flexneri Y. Nur-E-Kamal, M.S., al Mamun, A.A., Ahmed, Z.U. Microbiol. Immunol. (1994) [Pubmed]
  20. Pre-replication assembly of E. coli replisome components. den Blaauwen, T., Aarsman, M.E., Wheeler, L.J., Nanninga, N. Mol. Microbiol. (2006) [Pubmed]
  21. The role of protein dynamics in thymidylate synthase catalysis: variants of conserved 2'-deoxyuridine 5'-monophosphate (dUMP)-binding Tyr-261. Newby, Z., Lee, T.T., Morse, R.J., Liu, Y., Liu, L., Venkatraman, P., Santi, D.V., Finer-Moore, J.S., Stroud, R.M. Biochemistry (2006) [Pubmed]
 
WikiGenes - Universities