The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

GJB6  -  gap junction protein, beta 6, 30kDa

Homo sapiens

Synonyms: CX30, Connexin-30, Cx30, DFNA3, DFNA3B, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of GJB6


High impact information on GJB6

  • Mutations in GJB6 cause hidrotic ectodermal dysplasia [6].
  • Cx26 and Cx30 are the two major Cx isoforms found in the cochlea, and they coassemble to form hybrid (heteromeric and heterotypic) gap junctions (GJs) [7].
  • We generated mice in which extra copies of the Cx26 gene were transgenically expressed from a modified bacterial artificial chromosome in a Cx30(-/-) background [7].
  • In the absence of the Cx30 gene, Cx26 expressed from extra alleles completely restored hearing sensitivity and prevented hair cell death in deaf Cx30(-/-) mice [7].
  • Expression of GJB2 and GJB6 is reduced in a novel DFNB1 allele [8].

Chemical compound and disease context of GJB6


Biological context of GJB6

  • Another gap junction gene, connexin 30 (HGMW-approved symbol GJB6), is found to lie on the same PAC clone that hybridizes to chromosome 13q12 [1].
  • Heterozygotes at the GJB2 locus should be screened for the GJB6 deletion as a cause of deafness [11].
  • We report on the prevalence of GJB2 and GJB6 mutations in a large North American Repository of DNA from deaf probands and document the profound effects of familial ethnicity and parental mating types on the frequency of these mutations in the population [11].
  • In this study, we performed bidirectional sequencing of the GJB2 gene and polymerase chain reaction (PCR) screening for the common GJB6 deletion, as well as PCR/RFLP analysis for three mutations in mtDNA (A1555G, A3243G, A7445G), in 109 predominantly simplex AA and CH individuals [12].
  • Genetic heterogeneity of KID syndrome: identification of a Cx30 gene (GJB6) mutation in a patient with KID syndrome and congenital atrichia [2].

Anatomical context of GJB6


Associations of GJB6 with chemical compounds

  • MATERIALS AND METHODS: Female SD rats (n=201) allocated into 6 groups were treated with MCT-vehicle and ED-71 at 0.025 and 0.05 mug/kg/day (EDL and EDH groups), and with saline-vehicle and alendronate at 5 and 10 mug/kg/day (ALL and ALH groups) [10].
  • Biochemical parameters of endometrial secretion [oestradiol dehydrogenase (EDH), isocitrate dehydrogenase (ICDH)] measured in endometrial tissue and placental protein (PP14) measured in serum were all low in the groups receiving the continuous combination and placebo [18].
  • The diphosphonate disodium etidronate (EDHP) was given to all patients in an attempt to suppress calcification of new lesions; in five of them ectopic bone was removed during the treatment [19].
  • In addition, gadolinium injection reduced the number of Kupffer cells reactive with monoclonal antibodies directed against macrophages ED2 and Ki-M2R [20].
  • We have recently identified the ED2 antigen as the rat CD163 glycoprotein [21].

Other interactions of GJB6


Analytical, diagnostic and therapeutic context of GJB6

  • DNA studies were performed for the GJB2 and GJB6 loci by sequencing and PCR methods [11].
  • OBJECTIVE: To determine the relationship between ethnicity and mutations in the GJB2 and GJB6 genes in multi-cultural patients enrolled in a Canadian paediatric Cochlear Implant Program. METHODS: Blood was analyzed from 65 paediatric cochlear implant users by direct sequencing of the coding region and intron/exon boundaries of the GBJ2 gene [24].
  • We show a subsequent induction of Cx26 and Cx30 near the wound margins in spontaneous wound healing and-even earlier-after the transplantation of keratinocytes [4].
  • OBJECTIVE: To compare performance after cochlear implantation in children with mutations in connexin (Cx) 26 (GJB2) or Cx30 (GJB6) and children with deafness of unknown etiology [25].
  • RESULTS: The immunofluorescence staining of the normal human vocal fold's epithelium showed the expression of Cx26 and Cx30 in the parabasal and intermediate layers, whereas Cx43 was localized in the basal, parabasal and lower intermediate layers [26].


  1. Human connexin 30 (GJB6), a candidate gene for nonsyndromic hearing loss: molecular cloning, tissue-specific expression, and assignment to chromosome 13q12. Kelley, P.M., Abe, S., Askew, J.W., Smith, S.D., Usami, S., Kimberling, W.J. Genomics (1999) [Pubmed]
  2. Genetic heterogeneity of KID syndrome: identification of a Cx30 gene (GJB6) mutation in a patient with KID syndrome and congenital atrichia. Jan, A.Y., Amin, S., Ratajczak, P., Richard, G., Sybert, V.P. J. Invest. Dermatol. (2004) [Pubmed]
  3. Connexin interaction patterns in keratinocytes revealed morphologically and by FRET analysis. Di, W.L., Gu, Y., Common, J.E., Aasen, T., O'Toole, E.A., Kelsell, D.P., Zicha, D. J. Cell. Sci. (2005) [Pubmed]
  4. Connexins 26, 30, and 43: differences among spontaneous, chronic, and accelerated human wound healing. Brandner, J.M., Houdek, P., Hüsing, B., Kaiser, C., Moll, I. J. Invest. Dermatol. (2004) [Pubmed]
  5. The GJB2 mutation R75Q can cause nonsyndromic hearing loss DFNA3 or hereditary palmoplantar keratoderma with deafness. Feldmann, D., Denoyelle, F., Blons, H., Lyonnet, S., Loundon, N., Rouillon, I., Hadj-Rabia, S., Petit, C., Couderc, R., Garabédian, E.N., Marlin, S. Am. J. Med. Genet. A (2005) [Pubmed]
  6. Mutations in GJB6 cause hidrotic ectodermal dysplasia. Lamartine, J., Munhoz Essenfelder, G., Kibar, Z., Lanneluc, I., Callouet, E., Laoudj, D., Lemaître, G., Hand, C., Hayflick, S.J., Zonana, J., Antonarakis, S., Radhakrishna, U., Kelsell, D.P., Christianson, A.L., Pitaval, A., Der Kaloustian, V., Fraser, C., Blanchet-Bardon, C., Rouleau, G.A., Waksman, G. Nat. Genet. (2000) [Pubmed]
  7. Restoration of connexin26 protein level in the cochlea completely rescues hearing in a mouse model of human connexin30-linked deafness. Ahmad, S., Tang, W., Chang, Q., Qu, Y., Hibshman, J., Li, Y., Söhl, G., Willecke, K., Chen, P., Lin, X. Proc. Natl. Acad. Sci. U.S.A. (2007) [Pubmed]
  8. Expression of GJB2 and GJB6 is reduced in a novel DFNB1 allele. Wilch, E., Zhu, M., Burkhart, K.B., Regier, M., Elfenbein, J.L., Fisher, R.A., Friderici, K.H. Am. J. Hum. Genet. (2006) [Pubmed]
  9. Rat gap junction connexin-30 inhibits proliferation of glioma cell lines. Princen, F., Robe, P., Gros, D., Jarry-Guichard, T., Gielen, J., Merville, M.P., Bours, V. Carcinogenesis (2001) [Pubmed]
  10. 1alpha,25-Dihydroxy-2beta(3-hydroxypropoxy)vitamin D(3) (ED-71) suppressed callus remodeling but did not interfere with fracture healing in rat femora. Cao, Y., Mori, S., Mashiba, T., Kaji, Y., Manabe, T., Iwata, K., Miyamoto, K., Komatsubara, S., Yamamoto, T. Bone (2007) [Pubmed]
  11. Frequency and distribution of GJB2 (connexin 26) and GJB6 (connexin 30) mutations in a large North American repository of deaf probands. Pandya, A., Arnos, K.S., Xia, X.J., Welch, K.O., Blanton, S.H., Friedman, T.B., Garcia Sanchez, G., Liu MD, X.Z., Morell, R., Nance, W.E. Genet. Med. (2003) [Pubmed]
  12. Mutations in GJB2, GJB6, and mitochondrial DNA are rare in African American and Caribbean Hispanic individuals with hearing impairment. Samanich, J., Lowes, C., Burk, R., Shanske, S., Lu, J., Shanske, A., Morrow, B.E. Am. J. Med. Genet. A (2007) [Pubmed]
  13. A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. del Castillo, I., Villamar, M., Moreno-Pelayo, M.A., del Castillo, F.J., Alvarez, A., Tellería, D., Menéndez, I., Moreno, F. N. Engl. J. Med. (2002) [Pubmed]
  14. Targeted epidermal expression of mutant Connexin 26(D66H) mimics true Vohwinkel syndrome and provides a model for the pathogenesis of dominant connexin disorders. Bakirtzis, G., Choudhry, R., Aasen, T., Shore, L., Brown, K., Bryson, S., Forrow, S., Tetley, L., Finbow, M., Greenhalgh, D., Hodgins, M. Hum. Mol. Genet. (2003) [Pubmed]
  15. Modulation of connexin expression and gap junction communication in astrocytes by the gram-positive bacterium S. aureus. Esen, N., Shuffield, D., Syed, M.M., Kielian, T. Glia (2007) [Pubmed]
  16. Loss of function mutations of the GJB2 gene detected in patients with DFNB1-associated hearing impairment. Palmada, M., Schmalisch, K., Böhmer, C., Schug, N., Pfister, M., Lang, F., Blin, N. Neurobiol. Dis. (2006) [Pubmed]
  17. Functional studies of human skin disease- and deafness-associated connexin 30 mutations. Common, J.E., Becker, D., Di, W.L., Leigh, I.M., O'Toole, E.A., Kelsell, D.P. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  18. Serum placental protein 14 (PP14) reflects endometrial status during hormone replacement therapy. Byrjalsen, I., Thormann, L., Meinecke, B., Riis, B.J., Christiansen, C. Hum. Reprod. (1992) [Pubmed]
  19. Myositis ossificans progressiva. Clinical features of eight patients and their response to treatment. Smith, R., Russell, R.G., Woods, C.G. The Journal of bone and joint surgery. British volume. (1976) [Pubmed]
  20. The role of Kupffer cells in the surveillance of tumor growth in the liver. Zhang, W., Arii, S., Sasaoki, T., Adachi, Y., Funaki, N., Higashitsuji, H., Fujita, S., Furutani, M., Mise, M., Ishiguro, S. J. Surg. Res. (1993) [Pubmed]
  21. The rat macrophage scavenger receptor CD163: Expression, regulation and role in inflammatory mediator production. Polfliet, M.M., Fabriek, B.O., Daniëls, W.P., Dijkstra, C.D., van den Berg, T.K. Immunobiology (2006) [Pubmed]
  22. K+ cycling and the endocochlear potential. Wangemann, P. Hear. Res. (2002) [Pubmed]
  23. Direct regulation of the Xenopus engrailed-2 promoter by the Wnt signaling pathway, and a molecular screen for Wnt-responsive genes, confirm a role for Wnt signaling during neural patterning in Xenopus. McGrew, L.L., Takemaru, K., Bates, R., Moon, R.T. Mech. Dev. (1999) [Pubmed]
  24. Ethnicity and mutations in GJB2 (connexin 26) and GJB6 (connexin 30) in a multi-cultural Canadian paediatric Cochlear Implant Program. Propst, E.J., Stockley, T.L., Gordon, K.A., Harrison, R.V., Papsin, B.C. Int. J. Pediatr. Otorhinolaryngol. (2006) [Pubmed]
  25. Connexin-associated deafness and speech perception outcome of cochlear implantation. Taitelbaum-Swead, R., Brownstein, Z., Muchnik, C., Kishon-Rabin, L., Kronenberg, J., Megirov, L., Frydman, M., Hildesheimer, M., Avraham, K.B. Arch. Otolaryngol. Head Neck Surg. (2006) [Pubmed]
  26. Expression of gap junction proteins (connexin 26, 30, 32, 43) in normal mucosa, hyperkeratosis and carcinoma of the human larynx. Schneider, B., Teschner, M., Sudermann, T., Pikula, B., Lautermann, J. ORL J. Otorhinolaryngol. Relat. Spec. (2002) [Pubmed]
WikiGenes - Universities