The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Cochlear Implants

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cochlear Implants

 

Psychiatry related information on Cochlear Implants

  • Speech-perception scores using the TESM strategy were compared to scores using the spectral maxima sound processor (SMSP) strategy in a group of eight adult users of the Nucleus 22 cochlear implant system [6].
 

High impact information on Cochlear Implants

 

Chemical compound and disease context of Cochlear Implants

 

Biological context of Cochlear Implants

  • OBJECTIVE: The primary goal of this study was to examine changes that may occur in electrode impedance, electrically evoked compound action potential (EAP) threshold and slope of the EAP growth function, and behavioral measures of threshold T-level) and maximum comfort (C-level) over time in both adult and child cochlear implant users [13].
  • OBJECTIVE: The main objective of this study was to assess the correlation of auditory event related potential (ERP) measures with behavioral assessment data to identify if ERPs including mismatch negativity (MMN) can be used to categorize cochlear implant patients into good and poor performers [14].
  • OBJECTIVE: The objective of this study was to determine the relationship between electrically evoked whole nerve action potential (EAP) and electrical auditory brain stem response (EABR) thresholds and MAP threshold (T-level) and maximum comfort level (C-level) for subjects who use the Nucleus 24 cochlear implant system [15].
  • Neurophysiology of cochlear implant users I: effects of stimulus current level and electrode site on the electrical ABR, MLR, and N1-P2 response [16].
  • Measures that can be used to assess auditory development in this population and the application of some of these procedures in the pediatric study of the Clarion cochlear implant (Advanced Bionics Corp., Sylmar, Calif.) are also presented [17].
 

Anatomical context of Cochlear Implants

 

Associations of Cochlear Implants with chemical compounds

  • Ten months after starting cyclosporine treatment her course was stable and cochlear implant surgery was successfully performed [23].
  • Silastic with polyacrylic acid filler: swelling properties, biocompatibility and potential use in cochlear implants [24].
  • DESIGN: Phase 1 involved an examination of the clinical MAPs for the first 103 recipients implanted with the Contour electrode array in the Melbourne Cochlear Implant Clinic, to examine the ability to predict the entire MAP based on a smaller number of clinically determined T- and/or C-levels [25].
  • Cochlear implant fixation using titanium screws [26].
  • This paper deals with the Nucleus C124R (CS) (Contour) cochlear Implant: its characteristics, differences compared with the previous generation of devices, the perimodiolar electrode, and the surgical technique used for safe insertion [27].
 

Gene context of Cochlear Implants

  • OBJECTIVE: To determine the relationship between ethnicity and mutations in the GJB2 and GJB6 genes in multi-cultural patients enrolled in a Canadian paediatric Cochlear Implant Program. METHODS: Blood was analyzed from 65 paediatric cochlear implant users by direct sequencing of the coding region and intron/exon boundaries of the GBJ2 gene [28].
  • I give some qualified support to the first and second claim, but find that the principal weight of the argument must be borne by the third argument: that use of the cochlear implants is impermissible because Deaf culture is intrinsically valuable [29].
  • Speech-evoked cognitive P300 potentials in cochlear implant recipients [30].
  • CONCLUSIONS: The close approximation of the measured data to the model data indicates the feasibility of the clinical use of an EAP-based cochlear implant fitting protocol [31].
  • A method for recording the electrically evoked whole-nerve action potential (EAP) at the time of cochlear implant surgery is described [32].
 

Analytical, diagnostic and therapeutic context of Cochlear Implants

References

  1. Multichannel cochlear implantation in the rehabilitation of post-traumatic sensorineural hearing loss. Coligado, E.J., Wiet, R.J., O'Connor, C.A., Ito, V., Sahgal, V. Archives of physical medicine and rehabilitation. (1993) [Pubmed]
  2. Recurrent acute otitis media associated meningitis in a patient with a contralateral cochlear implant and bilateral cochleovestibular dysplasia. Belmont, M.J., Arjmand, E.M. Int. J. Pediatr. Otorhinolaryngol. (2004) [Pubmed]
  3. Better speech performance in cochlear implant patients with GJB2-related deafness. Fukushima, K., Sugata, K., Kasai, N., Fukuda, S., Nagayasu, R., Toida, N., Kimura, N., Takishita, T., Gunduz, M., Nishizaki, K. Int. J. Pediatr. Otorhinolaryngol. (2002) [Pubmed]
  4. Advances in the development of visual prostheses. Lakhanpal, R.R., Yanai, D., Weiland, J.D., Fujii, G.Y., Caffey, S., Greenberg, R.J., de Juan, E., Humayun, M.S. Current opinion in ophthalmology. (2003) [Pubmed]
  5. Which is mightier, the tuning fork or the bone oscillator? Behn, A., Laszlo, C.A., Black, D., Bryce, G.E. The Journal of otolaryngology. (2005) [Pubmed]
  6. Emphasis of short-duration acoustic speech cues for cochlear implant users. Vandali, A.E. The Journal of the Acoustical Society of America. (2001) [Pubmed]
  7. Cochlear implantation for the treatment of deafness. Copeland, B.J., Pillsbury, H.C. Annu. Rev. Med. (2004) [Pubmed]
  8. Cochlear implants: response to therapeutic irradiation. Ralston, A., Stevens, G., Mahomudally, E., Ibrahim, I., Leckie, E. Int. J. Radiat. Oncol. Biol. Phys. (1999) [Pubmed]
  9. Performance of cochlear implant recipients with GJB2-related deafness. Green, G.E., Scott, D.A., McDonald, J.M., Teagle, H.F., Tomblin, B.J., Spencer, L.J., Woodworth, G.G., Knutson, J.F., Gantz, B.J., Sheffield, V.C., Smith, R.J. Am. J. Med. Genet. (2002) [Pubmed]
  10. Enhanced coding in a cochlear-implant model using additive noise: aperiodic stochastic resonance with tuning. Morse, R.P., Roper, P. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. (2000) [Pubmed]
  11. Fechtner's syndrome: considerations of anesthetic management. Mertzlufft, F., Koster, A., Steinhart, H., Schenk, J.F., Crystal, G.J. Anesth. Analg. (2000) [Pubmed]
  12. Comparison of speech perception performance between the Nucleus 24 and Nucleus 24 Contour cochlear implant systems. Bacciu, A., Pasanisi, E., Vincenti, V., Guida, M., Barbot, A., Berghenti, M., Forli, F., Berrettini, S., Bacciu, S. Acta Otolaryngol. (2004) [Pubmed]
  13. A longitudinal study of electrode impedance, the electrically evoked compound action potential, and behavioral measures in nucleus 24 cochlear implant users. Hughes, M.L., Vander Werff, K.R., Brown, C.J., Abbas, P.J., Kelsay, D.M., Teagle, H.F., Lowder, M.W. Ear and hearing. (2001) [Pubmed]
  14. Event-related potentials in pediatric cochlear implant patients. Singh, S., Liasis, A., Rajput, K., Towell, A., Luxon, L. Ear and hearing. (2004) [Pubmed]
  15. The relationship between EAP and EABR thresholds and levels used to program the nucleus 24 speech processor: data from adults. Brown, C.J., Hughes, M.L., Luk, B., Abbas, P.J., Wolaver, A., Gervais, J. Ear and hearing. (2000) [Pubmed]
  16. Neurophysiology of cochlear implant users I: effects of stimulus current level and electrode site on the electrical ABR, MLR, and N1-P2 response. Firszt, J.B., Chambers, R.D., Kraus And, N., Reeder, R.M. Ear and hearing. (2002) [Pubmed]
  17. Cochlear implantation in children under the age of two years: candidacy considerations. Osberger, M.J. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. (1997) [Pubmed]
  18. Facial nerve stimulation produced by cochlear implants in patients with cochlear otosclerosis. Muckle, R.P., Levine, S.C. The American journal of otology. (1994) [Pubmed]
  19. Digital volume tomography: radiologic examinations of the temporal bone. Dalchow, C.V., Weber, A.L., Yanagihara, N., Bien, S., Werner, J.A. AJR. American journal of roentgenology. (2006) [Pubmed]
  20. The potential risk of carotid injury in cochlear implant surgery. Gastman, B.R., Hirsch, B.E., Sando, I., Fukui, M.B., Wargo, M.L. Laryngoscope (2002) [Pubmed]
  21. Herpes simplex virus antibodies in the perilymph of patients with Menière disease. Arnold, W., Niedermeyer, H.P. Arch. Otolaryngol. Head Neck Surg. (1997) [Pubmed]
  22. Temporal bone histopathology in connexin 26-related hearing loss. Jun, A.I., McGuirt, W.T., Hinojosa, R., Green, G.E., Fischel-Ghodsian, N., Smith, R.J. Laryngoscope (2000) [Pubmed]
  23. Complicated Cogan's syndrome with aortic insufficiency and coronary stenosis. Hammer, M., Witte, T., Mügge, A., Wollenhaupt, J., Laas, J., Laszig, R., Zeidler, H. J. Rheumatol. (1994) [Pubmed]
  24. Silastic with polyacrylic acid filler: swelling properties, biocompatibility and potential use in cochlear implants. Seldon, H.L., Dahm, M.C., Clark, G.M., Crowe, S. Biomaterials (1994) [Pubmed]
  25. Evaluation of streamlined programming procedures for the Nucleus cochlear implant with the Contour electrode array. Plant, K., Law, M.A., Whitford, L., Knight, M., Tari, S., Leigh, J., Pedley, K., Nel, E. Ear and hearing. (2005) [Pubmed]
  26. Cochlear implant fixation using titanium screws. Lee, D.J., Driver, M. Laryngoscope (2005) [Pubmed]
  27. Surgical technique for the Nucleus Contour cochlear implant. Cohen, N.L., Roland, J.T., Fishman, A. Ear and hearing. (2002) [Pubmed]
  28. Ethnicity and mutations in GJB2 (connexin 26) and GJB6 (connexin 30) in a multi-cultural Canadian paediatric Cochlear Implant Program. Propst, E.J., Stockley, T.L., Gordon, K.A., Harrison, R.V., Papsin, B.C. Int. J. Pediatr. Otorhinolaryngol. (2006) [Pubmed]
  29. Reconsidering cochlear implants: the lessons of Martha's Vineyard. Levy, N. Bioethics. (2002) [Pubmed]
  30. Speech-evoked cognitive P300 potentials in cochlear implant recipients. Micco, A.G., Kraus, N., Koch, D.B., McGee, T.J., Carrell, T.D., Sharma, A., Nicol, T., Wiet, R.J. The American journal of otology. (1995) [Pubmed]
  31. A model of a nucleus 24 cochlear implant fitting protocol based on the electrically evoked whole nerve action potential. Franck, K.H. Ear and hearing. (2002) [Pubmed]
  32. Intraoperative measures of electrically evoked auditory nerve compound action potential. Gantz, B.J., Brown, C.J., Abbas, P.J. The American journal of otology. (1994) [Pubmed]
  33. Management of the child with sensorineural hearing loss. Medical, surgical, hearing aids, cochlear implants. Brookhouser, P.E., Beauchaine, K.L., Osberger, M.J. Pediatr. Clin. North Am. (1999) [Pubmed]
  34. Pharmacological enhancement of aural habilitation in adult cochlear implant users. Tobey, E.A., Devous, M.D., Buckley, K., Overson, G., Harris, T., Ringe, W., Martinez-Verhoff, J. Ear and hearing. (2005) [Pubmed]
  35. Relationships among loudness indexes in cochlear-implant patients. Kuk, F.K., Tyler, R.S., Gantz, B.J., Bertschy, M. Arch. Otolaryngol. Head Neck Surg. (1990) [Pubmed]
  36. Identification of the impedance model of an implanted cochlear prosthesis from intracochlear potential measurements. Vanpoucke, F.J., Zarowski, A.J., Peeters, S.A. IEEE transactions on bio-medical engineering. (2004) [Pubmed]
 
WikiGenes - Universities