The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

9  -  tailspike protein

Enterobacteria phage P22

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of 9

 

High impact information on 9

 

Chemical compound and disease context of 9

 

Biological context of 9

  • The kinetics of appearance of the immunoreactive forms during the in vitro refolding of the protein in crude extracts of phage-infected cells was similar to that observed with the pure tailspike [14].
  • The proteins made from 15 mutant tailspike structural genes carried on high level expression plasmids have been analyzed with respect to their in vivo stability, quaternary structure, capsid assembly activity, and enzymatic activity [4].
  • Phage tailspike protein. A fishy tale of protein folding [15].
  • In the assembly pathway of the trimeric P22 tailspike protein, the protein conformation critical for the partitioning between productive folding and off-pathway aggregation is a monomeric folding intermediate [16].
  • We investigated the influence of the suppressor mutations on tailspike refolding in vitro, on its maturation at high expression levels in vivo, and on the rates of thermal unfolding of the native protein [17].
 

Anatomical context of 9

  • The in vivo and in vitro folding, assembly and misfolding of an elongated protein, the thermostable tailspike adhesin of phage P22, reveals important aspects of the sequence control of chain folding as well as its failure mode, inclusion body formation [18].
  • The gene and protein for the phage P22 tailspike, which is the phage adsorption organelle, have been intensively studied [19].
 

Associations of 9 with chemical compounds

  • The tailspike protein was reconstituted from polypeptide chains unfolded by urea as described by Fuchs et al [14].
  • Iodoacetamide also reacted with a folding intermediate during the refolding of purified tailspike chains in vitro, inhibiting further folding [9].
  • The diverse cysteine states may be an outcome of the folding and assembly pathway of the tailspike, which though lacking disulfide bonds in the native state, utilizes transient disulfide bonds in the maturation pathway [11].
  • The gene 9 mutation hmH3034 synthesizes a tailspike protein with a change at amino acid 100 from Asp to Asn [20].
  • In contrast, these conformational features are greatly altered by chemical denaturation of the tailspike with lithium halide and guanidine hydrochloride [21].
 

Analytical, diagnostic and therapeutic context of 9

References

  1. Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Steinbacher, S., Seckler, R., Miller, S., Steipe, B., Huber, R., Reinemer, P. Science (1994) [Pubmed]
  2. Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors. Steinbacher, S., Baxa, U., Miller, S., Weintraub, A., Seckler, R., Huber, R. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  3. The architecture of parallel beta-helices and related folds. Jenkins, J., Pickersgill, R. Prog. Biophys. Mol. Biol. (2001) [Pubmed]
  4. Characterization of bacteriophage P22 tailspike mutant proteins with altered endorhamnosidase and capsid assembly activities. Schwarz, J.J., Berget, P.B. J. Biol. Chem. (1989) [Pubmed]
  5. Molecular properties of global suppressors of temperature-sensitive folding mutations in P22 tailspike endorhamnosidase. Lee, S.C., Koh, H., Yu, M.H. J. Biol. Chem. (1991) [Pubmed]
  6. Monoclonal antibody epitope mapping describes tailspike beta-helix folding and aggregation intermediates. Jain, M., Evans, M.S., King, J., Clark, P.L. J. Biol. Chem. (2005) [Pubmed]
  7. The tailspike protein of Shigella phage Sf6. A structural homolog of Salmonella phage P22 tailspike protein without sequence similarity in the beta-helix domain. Freiberg, A., Morona, R., Van den Bosch, L., Jung, C., Behlke, J., Carlin, N., Seckler, R., Baxa, U. J. Biol. Chem. (2003) [Pubmed]
  8. A newly synthesized, ribosome-bound polypeptide chain adopts conformations dissimilar from early in vitro refolding intermediates. Clark, P.L., King, J. J. Biol. Chem. (2001) [Pubmed]
  9. Intracellular trapping of a cytoplasmic folding intermediate of the phage P22 tailspike using iodoacetamide. Sather, S.K., King, J. J. Biol. Chem. (1994) [Pubmed]
  10. Mutations improving the folding of phage P22 tailspike protein affect its receptor binding activity. Baxa, U., Steinbacher, S., Weintraub, A., Huber, R., Seckler, R. J. Mol. Biol. (1999) [Pubmed]
  11. Distinct cysteine sulfhydryl environments detected by analysis of Raman S-hh markers of Cys-->Ser mutant proteins. Raso, S.W., Clark, P.L., Haase-Pettingell, C., King, J., Thomas, G.J. J. Mol. Biol. (2001) [Pubmed]
  12. Intragenic suppressors of folding defects in the P22 tailspike protein. Fane, B., King, J. Genetics (1991) [Pubmed]
  13. Role for cysteine residues in the in vivo folding and assembly of the phage P22 tailspike. Haase-Pettingell, C., Betts, S., Raso, S.W., Stuart, L., Robinson, A., King, J. Protein Sci. (2001) [Pubmed]
  14. In vitro and ribosome-bound folding intermediates of P22 tailspike protein detected with monoclonal antibodies. Friguet, B., Djavadi-Ohaniance, L., King, J., Goldberg, M.E. J. Biol. Chem. (1994) [Pubmed]
  15. Phage tailspike protein. A fishy tale of protein folding. Goldenberg, D.P., Creighton, T.E. Curr. Biol. (1994) [Pubmed]
  16. Formation of fibrous aggregates from a non-native intermediate: the isolated P22 tailspike beta-helix domain. Schuler, B., Rachel, R., Seckler, R. J. Biol. Chem. (1999) [Pubmed]
  17. Mutations that stabilize folding intermediates of phage P22 tailspike protein: folding in vivo and in vitro, stability, and structural context. Beissinger, M., Lee, S.C., Steinbacher, S., Reinemer, P., Huber, R., Yu, M.H., Seckler, R. J. Mol. Biol. (1995) [Pubmed]
  18. There's a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike. Betts, S., King, J. Structure (1999) [Pubmed]
  19. Initial interaction of the P22 phage with the Salmonella typhimurium surface. Venza Colon, C.J., Vasquez Leon, A.Y., Villafañe, R.J. Puerto Rico health sciences journal. (2004) [Pubmed]
  20. Intragenic suppression of a capsid assembly-defective P22 tailspike mutation. Maurides, P.A., Schwarz, J.J., Berget, P.B. Genetics (1990) [Pubmed]
  21. Conformational stability of P22 tailspike proteins carrying temperature-sensitive folding mutations. Thomas, G.J., Becka, R., Sargent, D., Yu, M.H., King, J. Biochemistry (1990) [Pubmed]
  22. Temperature-sensitive mutations and second-site suppressor substitutions affect folding of the P22 tailspike protein in vitro. Mitraki, A., Danner, M., King, J., Seckler, R. J. Biol. Chem. (1993) [Pubmed]
  23. Reconstitution of the thermostable trimeric phage P22 tailspike protein from denatured chains in vitro. Seckler, R., Fuchs, A., King, J., Jaenicke, R. J. Biol. Chem. (1989) [Pubmed]
  24. Secondary structure and thermostability of the phage P22 tailspike. XX. Analysis by Raman spectroscopy of the wild-type protein and a temperature-sensitive folding mutant. Sargent, D., Benevides, J.M., Yu, M.H., King, J., Thomas, G.J. J. Mol. Biol. (1988) [Pubmed]
 
WikiGenes - Universities