The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Epitope Mapping

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Epitope Mapping


High impact information on Epitope Mapping

  • High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis [6].
  • Fine epitope mapping using nested peptides showed that clones using identical TCR beta chains, identical V alpha, but a different J alpha recognized distinct, nonoverlapping epitopes in the TPO 535-551 region [7].
  • Here we report on the cDNA cloning and partial epitope mapping of the 100-kD autoantigen from human placenta and HeLa lambda gt11 libraries [8].
  • In this report, we show that V1 bears structural similarities with V kappa regions through detailed epitope mapping of 26 CD4 mAbs [9].
  • Our approach was to determine serial changes over a 12-18-mo period in response to an epitope-mapping series of 265 12-mer peptides of myelin proteolipid protein (PLP) by patients with isolated monosymptomatic demyelinating syndromes (IMDS), a group of distinct clinical disorders with variable rates of progression to MS [10].

Biological context of Epitope Mapping


Anatomical context of Epitope Mapping


Associations of Epitope Mapping with chemical compounds

  • Structure/function analysis of the integrin beta 1 subunit by epitope mapping [21].
  • Antibody epitope mapping revealed that cleavage occurred at one or two target sites for caspases within the amino acid region YEWD31 (downward arrow) AGD34 (downward arrow) A, removing the N-terminal BH4 region known to be essential for the death-protective activity of Bcl-2 [22].
  • Epitope mapping with recombinant fVIII fragments indicated that LE2E9 recognized the fVIII C1 domain, but not the Arg2150His-substituted C1 domain [23].
  • Epitope mapping of inhibitory antibodies against platelet glycoprotein Ibalpha reveals interaction between the leucine-rich repeat N-terminal and C-terminal flanking domains of glycoprotein Ibalpha [24].
  • Furthermore, the acetylcholine receptor-like epitope of the midsize neurofilament (NF-M) was identified by peptide epitope mapping [25].

Gene context of Epitope Mapping

  • The soluble domain variants of BGP are ideal molecules for epitope mapping [26].
  • Epitope mapping studies identified peptides from the sequence of the autoantigen that preferentially induced interleukin-10 production, rather than proliferation, and demonstrated that many contain naturally processed epitopes [27].
  • Given that ADAMTS-13 may interact physiologically with various receptors or ligands, the occurrence, distribution, and the epitope mapping of nonneutralizing antibodies will be an important area for future research [28].
  • Future epitope-mapping studies with other MRP-specific MAbs win provide additional insights into the topology of MRP, and may help to identify functionally important regions of this protein [29].
  • These interactions are consistent with epitope mapping studies and with the observation that MRK-16 is specific for human class I P-glycoprotein [30].

Analytical, diagnostic and therapeutic context of Epitope Mapping


  1. Mutant conformation of p53. Precise epitope mapping using a filamentous phage epitope library. Stephen, C.W., Lane, D.P. J. Mol. Biol. (1992) [Pubmed]
  2. Characterization of murine monoclonal antibodies directed against the core proteins of human immunodeficiency virus types 1 and 2. Niedrig, M., Hinkula, J., Harthus, H.P., Bröker, M., Hopp, L., Pauli, G., Wahren, B. J. Virol. (1991) [Pubmed]
  3. Human immunodeficiency virus type 1-neutralizing monoclonal antibodies which react with p17 core protein: characterization and epitope mapping. Papsidero, L.D., Sheu, M., Ruscetti, F.W. J. Virol. (1989) [Pubmed]
  4. Humoral immune response recognizes a complex set of epitopes on human papillomavirus type 6 l1 capsomers. Orozco, J.J., Carter, J.J., Koutsky, L.A., Galloway, D.A. J. Virol. (2005) [Pubmed]
  5. Epitope-mapping studies define two major neutralization sites on the vaccinia virus extracellular enveloped virus glycoprotein B5R. Aldaz-Carroll, L., Whitbeck, J.C., Ponce de Leon, M., Lou, H., Hirao, L., Isaacs, S.N., Moss, B., Eisenberg, R.J., Cohen, G.H. J. Virol. (2005) [Pubmed]
  6. High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Cunningham, B.C., Wells, J.A. Science (1989) [Pubmed]
  7. Human self-reactive T cell clones expressing identical T cell receptor beta chains differ in their ability to recognize a cryptic self-epitope. Quaratino, S., Feldmann, M., Dayan, C.M., Acuto, O., Londei, M. J. Exp. Med. (1996) [Pubmed]
  8. Cloning and characterization of the cDNA coding for a polymyositis-scleroderma overlap syndrome-related nucleolar 100-kD protein. Blüthner, M., Bautz, F.A. J. Exp. Med. (1992) [Pubmed]
  9. Structural analysis of the human immunodeficiency virus-binding domain of CD4. Epitope mapping with site-directed mutants and anti-idiotypes. Sattentau, Q.J., Arthos, J., Deen, K., Hanna, N., Healey, D., Beverley, P.C., Sweet, R., Truneh, A. J. Exp. Med. (1989) [Pubmed]
  10. Diversity and plasticity of self recognition during the development of multiple sclerosis. Tuohy, V.K., Yu, M., Weinstock-Guttman, B., Kinkel, R.P. J. Clin. Invest. (1997) [Pubmed]
  11. Epitope mapping and functional analysis of three murine IgG1 monoclonal antibodies to human tumor necrosis factor-alpha. Bloom, J.W., Bettencourt, J.D., Mitra, G. J. Immunol. (1993) [Pubmed]
  12. Evolutionarily conserved sequences of striated muscle myosin heavy chain isoforms. Epitope mapping by cDNA expression. Miller, J.B., Teal, S.B., Stockdale, F.E. J. Biol. Chem. (1989) [Pubmed]
  13. Using the polymerase chain reaction to modify expression plasmids for epitope mapping. Mole, S.E., Iggo, R.D., Lane, D.P. Nucleic Acids Res. (1989) [Pubmed]
  14. Synaptonemal complex proteins: occurrence, epitope mapping and chromosome disjunction. Dobson, M.J., Pearlman, R.E., Karaiskakis, A., Spyropoulos, B., Moens, P.B. J. Cell. Sci. (1994) [Pubmed]
  15. Conformational transitions in peptides containing two putative alpha-helices of the prion protein. Zhang, H., Kaneko, K., Nguyen, J.T., Livshits, T.L., Baldwin, M.A., Cohen, F.E., James, T.L., Prusiner, S.B. J. Mol. Biol. (1995) [Pubmed]
  16. The supramolecular organization of fibrillin-rich microfibrils. Baldock, C., Koster, A.J., Ziese, U., Rock, M.J., Sherratt, M.J., Kadler, K.E., Shuttleworth, C.A., Kielty, C.M. J. Cell Biol. (2001) [Pubmed]
  17. Delineation of five thyroglobulin T cell epitopes with pathogenic potential in experimental autoimmune thyroiditis. Verginis, P., Stanford, M.M., Carayanniotis, G. J. Immunol. (2002) [Pubmed]
  18. Immunogenicity of the extracellular domains of C-C chemokine receptor 5 and the in vitro effects on simian immunodeficiency virus or HIV infectivity. Lehner, T., Doyle, C., Wang, Y., Babaahmady, K., Whittall, T., Tao, L., Bergmeier, L., Kelly, C. J. Immunol. (2001) [Pubmed]
  19. Epitope mapping of human thyroglobulin. Heterogeneous recognition by thyroid pathologic sera. Henry, M., Malthièry, Y., Zanelli, E., Charvet, B. J. Immunol. (1990) [Pubmed]
  20. Asparaginase display of polypeptides in the periplasm of Escherichia coli: potential rapid pepscan technique for antigen epitope mapping. Gaofu, Q., Jie, L., Rongyue, C., Xin, Y., Dan, M., Jie, W., Xiangchun, S., Qunwei, X., Roque, R.S., Xiuyun, Z., Jingjing, L. J. Immunol. Methods (2005) [Pubmed]
  21. Structure/function analysis of the integrin beta 1 subunit by epitope mapping. Shih, D.T., Edelman, J.M., Horwitz, A.F., Grunwald, G.B., Buck, C.A. J. Cell Biol. (1993) [Pubmed]
  22. Alphaviruses induce apoptosis in Bcl-2-overexpressing cells: evidence for a caspase-mediated, proteolytic inactivation of Bcl-2. Grandgirard, D., Studer, E., Monney, L., Belser, T., Fellay, I., Borner, C., Michel, M.R. EMBO J. (1998) [Pubmed]
  23. A human antibody directed to the factor VIII C1 domain inhibits factor VIII cofactor activity and binding to von Willebrand factor. Jacquemin, M., Benhida, A., Peerlinck, K., Desqueper, B., Vander Elst, L., Lavend'homme, R., d'Oiron, R., Schwaab, R., Bakkus, M., Thielemans, K., Gilles, J.G., Vermylen, J., Saint-Remy, J.M. Blood (2000) [Pubmed]
  24. Epitope mapping of inhibitory antibodies against platelet glycoprotein Ibalpha reveals interaction between the leucine-rich repeat N-terminal and C-terminal flanking domains of glycoprotein Ibalpha. Cauwenberghs, N., Vanhoorelbeke, K., Vauterin, S., Westra, D.F., Romo, G., Huizinga, E.G., Lopez, J.A., Berndt, M.C., Harsfalvi, J., Deckmyn, H. Blood (2001) [Pubmed]
  25. Neurofilament is an autoantigenic determinant in myasthenia gravis. Schultz, A., Hoffacker, V., Wilisch, A., Nix, W., Gold, R., Schalke, B., Tzartos, S., Müller-Hermelink, H.K., Marx, A. Ann. Neurol. (1999) [Pubmed]
  26. The N-domain of the biliary glycoprotein (BGP) adhesion molecule mediates homotypic binding: domain interactions and epitope analysis of BGPc. Teixeira, A.M., Fawcett, J., Simmons, D.L., Watt, S.M. Blood (1994) [Pubmed]
  27. Interleukin-10-mediated regulatory T-cell responses to epitopes on a human red blood cell autoantigen. Hall, A.M., Ward, F.J., Vickers, M.A., Stott, L.M., Urbaniak, S.J., Barker, R.N. Blood (2002) [Pubmed]
  28. Nonneutralizing IgM and IgG antibodies to von Willebrand factor-cleaving protease (ADAMTS-13) in a patient with thrombotic thrombocytopenic purpura. Scheiflinger, F., Knöbl, P., Trattner, B., Plaimauer, B., Mohr, G., Dockal, M., Dorner, F., Rieger, M. Blood (2003) [Pubmed]
  29. Location of a protease-hypersensitive region in the multidrug resistance protein (MRP) by mapping of the epitope of MRP-specific monoclonal antibody QCRL-1. Hipfner, D.R., Almquist, K.C., Stride, B.D., Deeley, R.G., Cole, S.P. Cancer Res. (1996) [Pubmed]
  30. Mode of binding of anti-P-glycoprotein antibody MRK-16 to its antigen. A crystallographic and molecular modeling study. Vasudevan, S., Tsuruo, T., Rose, D.R. J. Biol. Chem. (1998) [Pubmed]
  31. Key residues of a major cytochrome P4502D6 epitope are located on the surface of the molecule. Ma, Y., Thomas, M.G., Okamoto, M., Bogdanos, D.P., Nagl, S., Kerkar, N., Lopes, A.R., Muratori, L., Lenzi, M., Bianchi, F.B., Mieli-Vergani, G., Vergani, D. J. Immunol. (2002) [Pubmed]
  32. The globular head domain of titin extends into the center of the sarcomeric M band. cDNA cloning, epitope mapping and immunoelectron microscopy of two titin-associated proteins. Vinkemeier, U., Obermann, W., Weber, K., Fürst, D.O. J. Cell. Sci. (1993) [Pubmed]
  33. Human antibodies react with an epitope of the human papillomavirus type 6b L1 open reading frame which is distinct from the type-common epitope. Jenison, S.A., Yu, X.P., Valentine, J.M., Galloway, D.A. J. Virol. (1989) [Pubmed]
  34. IgE and IgG4 epitope mapping by microarray immunoassay reveals the diversity of immune response to the peanut allergen, Ara h 2. Shreffler, W.G., Lencer, D.A., Bardina, L., Sampson, H.A. J. Allergy Clin. Immunol. (2005) [Pubmed]
  35. Diversity of fast myosin heavy chain expression during development of gastrocnemius, bicep brachii, and posterior latissimus dorsi muscles in normal and dystrophic chickens. Bandman, E., Bennett, T. Dev. Biol. (1988) [Pubmed]
WikiGenes - Universities