The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

CTSA  -  cathepsin A

Homo sapiens

Synonyms: Carboxypeptidase C, Carboxypeptidase L, Cathepsin A, GLB2, GSL, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of CTSA

  • Human lysosomal N-acetyl-alpha-neuraminidase is deficient in two lysosomal storage disorders, sialidosis, caused by structural mutations in the neuraminidase gene, and galactosialidosis, in which a primary defect of protective protein/cathepsin A (PPCA) leads to a combined deficiency of neuraminidase and beta-D-galactosidase [1].
  • To investigate this process, we have used the baculovirus expression system to co-express neuraminidase and PPCA precursors in insect cells, which resulted in high enzymatic activity of neuraminidase [2].
  • Galactosialidosis is a recessively inherited lysosomal storage disease characterized by the combined deficiency of neuraminidase and beta-galactosidase secondary to the genetic deficiency of cathepsin A/protective protein [3].
  • Expression of lysosomal protective protein/cathepsin A in a stably transformed human neuroblastoma cell line during bi-directional differentiation into neuronal and Schwannian cells [4].
  • Cathepsin A was, however, increased in muscles moderately affected by muscular dystrophy and denervating diseases [5].
 

High impact information on CTSA

  • Transient expression of the cDNA in deficient human fibroblasts showed that the enzyme is compartmentalized in lysosomes and restored neuraminidase activity in a PPCA-dependent manner [6].
  • The human lysosomal enzyme occurs in complex with beta-galactosidase and protective protein/cathepsin A (PPCA), and is deficient in two genetic disorders: sialidosis, caused by a structural defect in the neuraminidase gene, and galactosialidosis, in which the loss of neuraminidase activity is secondary to a deficiency of PPCA [6].
  • Immediately after infection, APCs increase the endogenous GSL synthesis and stimulate GSL-specific T cells in a CD1- and T cell receptor (TCR)-dependent manner [7].
  • These properties and the substrate specificity distinguish PCP from cathepsin A, which is also in fibroblasts [8].
  • Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor [9].
 

Biological context of CTSA

 

Anatomical context of CTSA

  • Transport of human lysosomal neuraminidase to mature lysosomes requires protective protein/cathepsin A [1].
  • Gel filtration analysis of fibroblast extracts of patients deficient in either beta-galactosidase (beta-galactosidosis) or cathepsin A (galactosialidosis), which accumulate KS, demonstrates that the 1.27-MDa complex is disrupted and that GALNS is present only in free homodimeric form [12].
  • The lysosomal carboxypeptidase, cathepsin A, which forms a complex with and activates Neu1 in the lysosome, is sorted to the plasma membrane of the differentiating cells similarly to Neu1 [13].
  • Protective protein/cathepsin A loss in cultured cells derived from an early-infantile form of galactosialidosis patients homozygous for the A1184-G transition (Y395C mutation) [14].
  • The acid carboxypeptidase (cathepsin A) and lysosomal neuraminidase activities were markedly decreased in cultured fibroblasts and chorionic villus cells derived from the patients, although the decrease in beta-galactosidase activity was less [14].
 

Associations of CTSA with chemical compounds

  • Association of N-acetylgalactosamine-6-sulfate sulfatase with the multienzyme lysosomal complex of beta-galactosidase, cathepsin A, and neuraminidase. Possible implication for intralysosomal catabolism of keratan sulfate [12].
  • PPCA associates with lamp2a on the lysosomal membrane and cleaves lamp2a near the boundary between the luminal and transmembrane domains [9].
  • The latter is homologous to serine carboxypeptidases and has cathepsin A-like activity which is distinct from its protective function towards the two glycosidases [15].
  • A structural model of the mutant PPCA was constructed by amino acid substitution of 453glutamic acid for lysine in the crystal structure of the wild type PPCA precursor reported [16].
  • Invasion is a complex process controlled by secretion and activation of proteases, alteration of integrin levels and GSL (glycosphingolipid) patterns [17].
 

Physical interactions of CTSA

  • Anti-human cathepsin A rabbit antiserum coprecipitates GALNS together with cathepsin A, beta-galactosidase, and alpha-neuraminidase in both a purified preparation of the 1 [12].
  • New mutations in the PPBG gene lead to loss of PPCA protein which affects the level of the beta-galactosidase/neuraminidase complex and the EBP-receptor [18].
  • Galactosialidosis, a clinically similar disorder, is caused by the secondary Neu1 deficiency because of genetic defects in cathepsin A that form a complex with Neu1 and activate it [19].
 

Other interactions of CTSA

 

Analytical, diagnostic and therapeutic context of CTSA

References

  1. Transport of human lysosomal neuraminidase to mature lysosomes requires protective protein/cathepsin A. van der Spoel, A., Bonten, E., d'Azzo, A. EMBO J. (1998) [Pubmed]
  2. Lysosomal neuraminidase. Catalytic activation in insect cells is controlled by the protective protein/cathepsin A. Bonten, E.J., d'Azzo, A. J. Biol. Chem. (2000) [Pubmed]
  3. Molecular pathology of galactosialidosis in a patient affected with two new frameshift mutations in the cathepsin A/protective protein gene. Richard, C., Tranchemontagne, J., Elsliger, M.A., Mitchell, G.A., Potier, M., Pshezhetsky, A.V. Hum. Mutat. (1998) [Pubmed]
  4. Expression of lysosomal protective protein/cathepsin A in a stably transformed human neuroblastoma cell line during bi-directional differentiation into neuronal and Schwannian cells. Itoh, K., Satoh, Y., Kadota, Y., Oheda, Y., Kuwahara, J., Shimmoto, M., Sakuraba, H. Neurochem. Int. (2004) [Pubmed]
  5. Arylamidase and cathepsin-A activity of normal and dystrophic human muscle. Kar, N.C., Pearson, C.M. Proc. Soc. Exp. Biol. Med. (1976) [Pubmed]
  6. Characterization of human lysosomal neuraminidase defines the molecular basis of the metabolic storage disorder sialidosis. Bonten, E., van der Spoel, A., Fornerod, M., Grosveld, G., d'Azzo, A. Genes Dev. (1996) [Pubmed]
  7. Bacterial infections promote T cell recognition of self-glycolipids. De Libero, G., Moran, A.P., Gober, H.J., Rossy, E., Shamshiev, A., Chelnokova, O., Mazorra, Z., Vendetti, S., Sacchi, A., Prendergast, M.M., Sansano, S., Tonevitsky, A., Landmann, R., Mori, L. Immunity (2005) [Pubmed]
  8. Prolylcarboxypeptidase (angiotensinase C) in human lung and cultured cells. Kumamoto, K., Stewart, T.A., Johnson, A.R., Erdös, E.G. J. Clin. Invest. (1981) [Pubmed]
  9. Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor. Cuervo, A.M., Mann, L., Bonten, E.J., d'Azzo, A., Dice, J.F. EMBO J. (2003) [Pubmed]
  10. The gene encoding human protective protein (PPGB) is on chromosome 20. Wiegant, J., Galjart, N.J., Raap, A.K., d'Azzo, A. Genomics (1991) [Pubmed]
  11. A genetic map of chromosome 20q12-q13.1: multiple highly polymorphic microsatellite and RFLP markers linked to the maturity-onset diabetes of the young (MODY) locus. Rothschild, C.B., Akots, G., Hayworth, R., Pettenati, M.J., Rao, P.N., Wood, P., Stolz, F.M., Hansmann, I., Serino, K., Keith, T.P. Am. J. Hum. Genet. (1993) [Pubmed]
  12. Association of N-acetylgalactosamine-6-sulfate sulfatase with the multienzyme lysosomal complex of beta-galactosidase, cathepsin A, and neuraminidase. Possible implication for intralysosomal catabolism of keratan sulfate. Pshezhetsky, A.V., Potier, M. J. Biol. Chem. (1996) [Pubmed]
  13. Monocyte Differentiation Up-regulates the Expression of the Lysosomal Sialidase, Neu1, and Triggers Its Targeting to the Plasma Membrane via Major Histocompatibility Complex Class II-positive Compartments. Liang, F., Seyrantepe, V., Landry, K., Ahmad, R., Ahmad, A., Stamatos, N.M., Pshezhetsky, A.V. J. Biol. Chem. (2006) [Pubmed]
  14. Protective protein/cathepsin A loss in cultured cells derived from an early-infantile form of galactosialidosis patients homozygous for the A1184-G transition (Y395C mutation). Itoh, K., Shimmoto, M., Utsumi, K., Mizoguchi, N., Miharu, N., Ohama, K., Sakuraba, H. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  15. Human lysosomal protective protein. Glycosylation, intracellular transport, and association with beta-galactosidase in the endoplasmic reticulum. Morreau, H., Galjart, N.J., Willemsen, R., Gillemans, N., Zhou, X.Y., d'Azzo, A. J. Biol. Chem. (1992) [Pubmed]
  16. Structural and functional study of K453E mutant protective protein/cathepsin A causing the late infantile form of galactosialidosis. Takiguchi, K., Itoh, K., Shimmoto, M., Ozand, P.T., Doi, H., Sakuraba, H. J. Hum. Genet. (2000) [Pubmed]
  17. Clustering of monosialyl-Gb5 initiates downstream signalling events leading to invasion of MCF-7 breast cancer cells. van Slambrouck, S., Steelant, W.F. Biochem. J. (2007) [Pubmed]
  18. New mutations in the PPBG gene lead to loss of PPCA protein which affects the level of the beta-galactosidase/neuraminidase complex and the EBP-receptor. Malvagia, S., Morrone, A., Caciotti, A., Bardelli, T., d'Azzo, A., Ancora, G., Zammarchi, E., Donati, M.A. Mol. Genet. Metab. (2004) [Pubmed]
  19. Neu4, a novel human lysosomal lumen sialidase, confers normal phenotype to sialidosis and galactosialidosis cells. Seyrantepe, V., Landry, K., Trudel, S., Hassan, J.A., Morales, C.R., Pshezhetsky, A.V. J. Biol. Chem. (2004) [Pubmed]
  20. Protective protein in the bovine lysosomal beta-galactosidase complex. Hiraiwa, M., Saitoh, M., Arai, N., Shiraishi, T., Odani, S., Uda, Y., Ono, T., O'Brien, J.S. Biochim. Biophys. Acta (1997) [Pubmed]
  21. Purification, cDNA cloning, and expression of a new human blood plasma glutamate carboxypeptidase homologous to N-acetyl-aspartyl-alpha-glutamate carboxypeptidase/prostate-specific membrane antigen. Gingras, R., Richard, C., El-Alfy, M., Morales, C.R., Potier, M., Pshezhetsky, A.V. J. Biol. Chem. (1999) [Pubmed]
  22. Lysosomal protective protein/cathepsin A. Role of the "linker" domain in catalytic activation. Bonten, E.J., Galjart, N.J., Willemsen, R., Usmany, M., Vlak, J.M., d'Azzo, A. J. Biol. Chem. (1995) [Pubmed]
  23. Direct affinity purification and supramolecular organization of human lysosomal cathepsin A. Pshezhetsky, A.V., Potier, M. Arch. Biochem. Biophys. (1994) [Pubmed]
  24. New mutations in two Dutch patients with early infantile galactosialidosis. Groener, J., Maaswinkel-Mooy, P., Smit, V., van der Hoeven, M., Bakker, J., Campos, Y., d'Azzo, A. Mol. Genet. Metab. (2003) [Pubmed]
  25. Novel missense mutations in the human lysosomal sialidase gene in sialidosis patients and prediction of structural alterations of mutant enzymes. Itoh, K., Naganawa, Y., Matsuzawa, F., Aikawa, S., Doi, H., Sasagasako, N., Yamada, T., Kira, J., Kobayashi, T., Pshezhetsky, A.V., Sakuraba, H. J. Hum. Genet. (2002) [Pubmed]
 
WikiGenes - Universities