The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

GALNS  -  galactosamine (N-acetyl)-6-sulfatase

Homo sapiens

Synonyms: Chondroitinase, Chondroitinsulfatase, GALNAC6S, GAS, GalN6S, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of GALNS


Psychiatry related information on GALNS

  • Animals treated with chondroitinase showed significant improvements in open-field locomotor activity as measured by the Basso, Beattie and Bresnahan scoring system after both severe and moderate SCI (p<0.05 and 0.01, respectively) [6].

High impact information on GALNS


Chemical compound and disease context of GALNS


Biological context of GALNS


Anatomical context of GALNS

  • Gel filtration analysis of fibroblast extracts of patients deficient in either beta-galactosidase (beta-galactosidosis) or cathepsin A (galactosialidosis), which accumulate KS, demonstrates that the 1.27-MDa complex is disrupted and that GALNS is present only in free homodimeric form [20].
  • The GALNS activity and cross-reacting material are reduced in the fibroblasts of patients affected with galactosialidosis, indicating that the complex with cathepsin A may protect GALNS in the lysosome [20].
  • There was excessive excretion of keratan sulfate in the urine, and GALNS deficiency was confirmed in leukocytes [17].
  • To measure the variability of GALNS expression among different transduced cells, we transduced normal and Morquio lymphoblastoid B cells and PBLs, human keratinocytes, murine myoblasts C2C12, and rabbit synoviocytes HIG-82 with LGSN [21].
  • Affected homozygous mice have no detectable GALNS enzyme activity and accumulate glycosaminoglycans in multiple tissues including visceral organs, brain, cornea, bone, ligament and bone marrow [22].

Associations of GALNS with chemical compounds


Physical interactions of GALNS

  • Anti-human cathepsin A rabbit antiserum coprecipitates GALNS together with cathepsin A, beta-galactosidase, and alpha-neuraminidase in both a purified preparation of the 1 [20].
  • We find that PF4 binds to human CD34+ hematopoietic progenitor cells (HPCs) with a median effective concentration of 1 microg/mL but not after exposure to chondroitinase ABC [27].
  • Chondroitinase treatment of the proteoglycans did not affect their binding to either native tenascin-C or to any of the recombinant proteins, demonstrating that these interactions are mediated by the proteoglycan core proteins rather than through the glycosaminoglycan chains [28].
  • The M-protein bound to a single GAG band with intermediate mobility which eluted with 1.25 N NaCl on ion-exchange chromatography and was chondroitinase sensitive [29].

Enzymatic interactions of GALNS


Regulatory relationships of GALNS


Other interactions of GALNS


Analytical, diagnostic and therapeutic context of GALNS


  1. Biochemical and structural analysis of missense mutations in N-acetylgalactosamine-6-sulfate sulfatase causing mucopolysaccharidosis IVA phenotypes. Sukegawa, K., Nakamura, H., Kato, Z., Tomatsu, S., Montaño, A.M., Fukao, T., Toietta, G., Tortora, P., Orii, T., Kondo, N. Hum. Mol. Genet. (2000) [Pubmed]
  2. Mucopolysaccharidosis IVA: submicroscopic deletion of 16q24.3 and a novel R386C mutation of N-acetylgalactosamine-6-sulfate sulfatase gene in a classical Morquio disease. Fukuda, S., Tomatsu, S., Masuno, M., Ogawa, T., Yamagishi, A., Rezvi, G.M., Sukegawa, K., Shimozawa, N., Suzuki, Y., Kondo, N., Imaizumi, K., Kuroki, Y., Okabe, T., Orii, T. Hum. Mutat. (1996) [Pubmed]
  3. Crystallization and some properties of chondroitinase from Arthrobacter aurescens. Hiyama, K., Okada, S. J. Biol. Chem. (1975) [Pubmed]
  4. Characterization of monoclonal antibody 155.8 and partial characterization of its proteoglycan antigen on human melanoma cells. Harper, J.R., Bumol, T.F., Reisfeld, R.A. J. Immunol. (1984) [Pubmed]
  5. Basement membrane zone type XV collagen is a disulfide-bonded chondroitin sulfate proteoglycan in human tissues and cultured cells. Li, D., Clark, C.C., Myers, J.C. J. Biol. Chem. (2000) [Pubmed]
  6. Chondroitinase ABCI improves locomotion and bladder function following contusion injury of the rat spinal cord. Caggiano, A.O., Zimber, M.P., Ganguly, A., Blight, A.R., Gruskin, E.A. J. Neurotrauma (2005) [Pubmed]
  7. Chondroitinase ABC promotes functional recovery after spinal cord injury. Bradbury, E.J., Moon, L.D., Popat, R.J., King, V.R., Bennett, G.S., Patel, P.N., Fawcett, J.W., McMahon, S.B. Nature (2002) [Pubmed]
  8. Chondroitin sulfate A is a cell surface receptor for Plasmodium falciparum-infected erythrocytes. Rogerson, S.J., Chaiyaroj, S.C., Ng, K., Reeder, J.C., Brown, G.V. J. Exp. Med. (1995) [Pubmed]
  9. Proteoglycans in cell-mediated cytotoxicity. Identification, localization, and exocytosis of a chondroitin sulfate proteoglycan from human cloned natural killer cells during target cell lysis. MacDermott, R.P., Schmidt, R.E., Caulfield, J.P., Hein, A., Bartley, G.T., Ritz, J., Schlossman, S.F., Austen, K.F., Stevens, R.L. J. Exp. Med. (1985) [Pubmed]
  10. Mast cell heparin stimulates migration of capillary endothelial cells in vitro. Azizkhan, R.G., Azizkhan, J.C., Zetter, B.R., Folkman, J. J. Exp. Med. (1980) [Pubmed]
  11. Borrelia burgdorferi bind to epithelial cell proteoglycans. Isaacs, R.D. J. Clin. Invest. (1994) [Pubmed]
  12. Clinical, biochemical and molecular findings in a two-generation Morquio A family. Tylki-Szymańska, A., Czartoryska, B., Bunge, S., van Diggelen, O.P., Kleijer, W.J., Poorthuis, B.J., Huijmans, J.G., Górska, D. Clin. Genet. (1998) [Pubmed]
  13. Pigment cell pattern formation in Taricha torosa: the role of the extracellular matrix in controlling pigment cell migration and differentiation. Tucker, R.P., Erickson, C.A. Dev. Biol. (1986) [Pubmed]
  14. Glycosaminoglycans in cortical autopsy samples from Alzheimer brain. Jenkins, H.G., Bachelard, H.S. J. Neurochem. (1988) [Pubmed]
  15. Isolation and characterization of heparin from human mastocytoma tissue. Thunberg, L., Höök, M., Lindahl, U., Abildgaard, U., Langholm, R. Thromb. Haemost. (1980) [Pubmed]
  16. COOH-terminal 26-amino acid residues of progastrin are sufficient for stimulation of mitosis in murine colonic epithelium in vivo. Ottewell, P.D., Varro, A., Dockray, G.J., Kirton, C.M., Watson, A.J., Wang, T.C., Dimaline, R., Pritchard, D.M. Am. J. Physiol. Gastrointest. Liver Physiol. (2005) [Pubmed]
  17. Combined adenine phosphoribosyltransferase and N-acetylgalactosamine-6-sulfate sulfatase deficiency. Wang, L., Ou, X., Sebesta, I., Vondrak, K., Krijt, J., Elleder, M., Poupetova, H., Ledvinova, J., Zeman, J., Simmonds, H.A., Tischfield, J.A., Sahota, A. Mol. Genet. Metab. (1999) [Pubmed]
  18. Mucopolysaccharidosis IVA: identification of a common missense mutation I113F in the N-Acetylgalactosamine-6-sulfate sulfatase gene. Tomatsu, S., Fukuda, S., Cooper, A., Wraith, J.E., Rezvi, G.M., Yamagishi, A., Yamada, N., Kato, Z., Isogai, K., Sukegawa, K. Am. J. Hum. Genet. (1995) [Pubmed]
  19. Mucopolysaccharidosis IVA: four new exonic mutations in patients with N-acetylgalactosamine-6-sulfate sulfatase deficiency. Tomatsu, S., Fukuda, S., Yamagishi, A., Cooper, A., Wraith, J.F., Hori, T., Kato, Z., Yamada, N., Isogai, K., Sukegawa, K., Kondo, N., Suzuki, Y., Shimozawa, N., Orii, T. Am. J. Hum. Genet. (1996) [Pubmed]
  20. Association of N-acetylgalactosamine-6-sulfate sulfatase with the multienzyme lysosomal complex of beta-galactosidase, cathepsin A, and neuraminidase. Possible implication for intralysosomal catabolism of keratan sulfate. Pshezhetsky, A.V., Potier, M. J. Biol. Chem. (1996) [Pubmed]
  21. Various cells retrovirally transduced with N-acetylgalactosoamine-6-sulfate sulfatase correct Morquio skin fibroblasts in vitro. Toietta, G., Severini, G.M., Traversari, C., Tomatsu, S., Sukegawa, K., Fukuda, S., Kondo, N., Tortora, P., Bordignon, C. Hum. Gene Ther. (2001) [Pubmed]
  22. Development of MPS IVA mouse (Galnstm(hC79S.mC76S)slu) tolerant to human N-acetylgalactosamine-6-sulfate sulfatase. Tomatsu, S., Gutierrez, M., Nishioka, T., Yamada, M., Yamada, M., Tosaka, Y., Grubb, J.H., Montaño, A.M., Vieira, M.B., Trandafirescu, G.G., Peña, O.M., Yamaguchi, S., Orii, K.O., Orii, T., Noguchi, A., Laybauer, L. Hum. Mol. Genet. (2005) [Pubmed]
  23. Mucopolysaccharidosis IVA: characterization of a common mutation found in Finnish patients with attenuated phenotype. Montaño, A.M., Kaitila, I., Sukegawa, K., Tomatsu, S., Kato, Z., Nakamura, H., Fukuda, S., Orii, T., Kondo, N. Hum. Genet. (2003) [Pubmed]
  24. Decreased elastin deposition and high proliferation of fibroblasts from Costello syndrome are related to functional deficiency in the 67-kD elastin-binding protein. Hinek, A., Smith, A.C., Cutiongco, E.M., Callahan, J.W., Gripp, K.W., Weksberg, R. Am. J. Hum. Genet. (2000) [Pubmed]
  25. Porcine N-acetylgalactosamine 6-sulfatase (GALNS) cDNA sequence and expression in developing teeth. Yamakoshi, Y., Hu, J.C., Liu, S., Sun, X., Zhang, C., Oida, S., Fukae, M., Simmer, J.P. Connect. Tissue Res. (2002) [Pubmed]
  26. A unique property of a plasma proteoglycan, the C1q inhibitor. An anticoagulant state resulting from its binding to fibrinogen. Galanakis, D.K., Ghebrehiwet, B. J. Clin. Invest. (1994) [Pubmed]
  27. Platelet factor 4 promotes adhesion of hematopoietic progenitor cells and binds IL-8: novel mechanisms for modulation of hematopoiesis. Dudek, A.Z., Nesmelova, I., Mayo, K., Verfaillie, C.M., Pitchford, S., Slungaard, A. Blood (2003) [Pubmed]
  28. The fibrinogen-like globe of tenascin-C mediates its interactions with neurocan and phosphacan/protein-tyrosine phosphatase-zeta/beta. Milev, P., Fischer, D., Häring, M., Schulthess, T., Margolis, R.K., Chiquet-Ehrismann, R., Margolis, R.U. J. Biol. Chem. (1997) [Pubmed]
  29. Glycosaminoglycan antigens in peripheral nerve. Studies with antibodies from a patient with neuropathy and monoclonal gammopathy. Freddo, L., Sherman, W.H., Latov, N. J. Neuroimmunol. (1986) [Pubmed]
  30. Molecular cloning and characterization of a novel chondroitin sulfate glucuronyltransferase that transfers glucuronic acid to N-acetylgalactosamine. Gotoh, M., Yada, T., Sato, T., Akashima, T., Iwasaki, H., Mochizuki, H., Inaba, N., Togayachi, A., Kudo, T., Watanabe, H., Kimata, K., Narimatsu, H. J. Biol. Chem. (2002) [Pubmed]
  31. Characterization of a neutrophil cell surface glycosaminoglycan that mediates binding of platelet factor 4. Petersen, F., Brandt, E., Lindahl, U., Spillmann, D. J. Biol. Chem. (1999) [Pubmed]
  32. Role of the glycosaminoglycan component of thrombomodulin in its acceleration of the inactivation of single-chain urokinase-type plasminogen activator by thrombin. de Munk, G.A., Parkinson, J.F., Groeneveld, E., Bang, N.U., Rijken, D.C. Biochem. J. (1993) [Pubmed]
  33. Up-regulation of a chondroitin sulphate epitope during regeneration of mouse sciatic nerve: evidence that the immunoreactive molecules are related to the chondroitin sulphate proteoglycans decorin and versican. Braunewell, K.H., Martini, R., LeBaron, R., Kresse, H., Faissner, A., Schmitz, B., Schachner, M. Eur. J. Neurosci. (1995) [Pubmed]
  34. Proteoglycan-induced arthritis in BALB/c mice. Clinical features and histopathology. Glant, T.T., Mikecz, K., Arzoumanian, A., Poole, A.R. Arthritis Rheum. (1987) [Pubmed]
  35. In vitro effects of insulin on macromolecular events in newt limb regeneration blastemata. Vethamany-Globus, S., Globus, M., Darch, A., Milton, G., Tomlinson, B.L. J. Exp. Zool. (1984) [Pubmed]
  36. Heteroallelic missense mutations of the galactosamine-6-sulfate sulfatase (GALNS) gene in a mild form of Morquio disease (MPS IVA). Cole, D.E., Fukuda, S., Gordon, B.A., Rip, J.W., LeCouteur, A.N., Rupar, C.A., Tomatsu, S., Ogawa, T., Sukegawa, K., Orii, T. Am. J. Med. Genet. (1996) [Pubmed]
  37. Morquio syndrome (mucopolysaccharidosis IV B) associated with beta-galactosidase deficiency. Report of two cases. Groebe, H., Krins, M., Schmidberger, H., von Figura, K., Harzer, K., Kresse, H., Paschke, E., Sewell, A., Ullrich, K. Am. J. Hum. Genet. (1980) [Pubmed]
  38. Mucopolysaccharidosis IV A: molecular cloning of the human N-acetylgalactosamine-6-sulfatase gene (GALNS) and analysis of the 5'-flanking region. Nakashima, Y., Tomatsu, S., Hori, T., Fukuda, S., Sukegawa, K., Kondo, N., Suzuki, Y., Shimozawa, N., Orii, T. Genomics (1994) [Pubmed]
  39. Molecular analysis of Turkish mucopolysaccharidosis IVA (Morquio A) patients: identification of novel mutations in the N-acetylgalactosamine-6-sulfate sulfatase (GALNS) gene. Terzioglu, M., Tokatli, A., Coskun, T., Emre, S. Hum. Mutat. (2002) [Pubmed]
WikiGenes - Universities