The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

RANBP2  -  RAN binding protein 2

Homo sapiens

Synonyms: 358 kDa nucleoporin, ADANE, ANE1, E3 SUMO-protein ligase RanBP2, IIAE3, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of RANBP2

  • Here, we show RanBP2 is abundant in the ellipsoid compartment of photoreceptors and RanGTPase-positive particles in cytoplasmic tracks extending away from the nuclear envelope of subpopulations of ganglion cells, suggesting RanBP2's release from nuclear pore complexes [1].
  • We demonstrated that peripheral T cell tolerance toward murine melanoma self-antigens gp100 and TRP-2 can be broken by an autologous oral DNA vaccine containing the murine ubiquitin gene fused to minigenes encoding peptide epitopes gp100(25-33) and TRP-2(181-188) [2].
  • Our results show that TRP-2-specific CD8+ T cells elicited by immunization with recombinant adenovirus expressing the mini-gene epitope are efficiently stimulated and amplified in vitro to a greater extent by aAPCs than by natural splenic APCs [3].

High impact information on RANBP2

  • RanBP2 directly interacts with the E2 enzyme Ubc9 and strongly enhances SUMO1-transfer from Ubc9 to the SUMO1 target Sp100 [4].
  • We have found that the mammalian Ran GTPase-activating protein RanGAP1 is highly concentrated at the cytoplasmic periphery of the nuclear pore complex (NPC), where it associates with the 358-kDa Ran-GTP-binding protein RanBP2 [5].
  • A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2 [5].
  • Inhibition of nuclear protein import resulting from antibodies directed at NPC-associated RanGAP1 cannot be overcome by soluble cytosolic RanGAP1, indicating that GTP hydrolysis by Ran at RanBP2 is required for nuclear protein import [5].
  • Type-II cyclophilin is identical to RanBP2, a large protein that binds the GTPase Ran [6].

Biological context of RANBP2


Anatomical context of RANBP2


Associations of RANBP2 with chemical compounds

  • Parkin ubiquitinates and promotes the degradation of RanBP2 [13].
  • Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region [14].
  • Nonmembrane nucleoporins Nup153, Nup214, and Nup358 that are modified by O-linked N-acetylglucosamine and recognized by a monoclonal antibody were phosphorylated throughout the cell cycle and hyperphosphorylated during M phase [15].
  • In particular, the conversion of an aspartic acid to an isoaspartic acid within the melanoma antigen tyrosinase-related protein (TRP)-2 peptide-(181-188) makes the otherwise immunologically ignored TRP-2 antigen immunogenic [16].
  • The aim was to investigate the roles of proline residues in extracellular loop 2 (P172, P183, P188 and P209) and transmembrane domains 2, 5, 11 and 12 (P108, P270, P526, P551, P552 and P570) in determining noradrenaline transporter (NET) expression and function [17].

Physical interactions of RANBP2


Regulatory relationships of RANBP2

  • KIF5C and KIF5B are specifically expressed in a subset of neuroretinal cells and differentially localize with RanBP2 and importin-beta in distinct compartments [1].

Other interactions of RANBP2


Analytical, diagnostic and therapeutic context of RANBP2

  • Electron microscopy showed that RanBP2 forms a flexible filamentous molecule with a length of approximately 36 nm, suggesting that it comprises a major portion of the cytoplasmic fibrils implicated in initial binding of import substrates to the NPC [26].
  • Mutation of P108, P270 and P526 disrupted cell surface expression, from [3H]nisoxetine binding and confocal microscopy data [17].
  • Moreover, the intratumoral injection of immature DC after treatment with PIC liposome significantly increased the number of TRP-2-specific IFN-gamma-producing cells in the lymph nodes as well as spleen, which resulted in an augmentation of the anti-tumor immune response [27].
  • These results demonstrate that TRP-2 2M is an agonist epitope that can induce anti-tumor immunity superior to its wild-type epitope, and has potential application in peptide-mediated immunotherapy [28].


  1. Identification of RanBP2- and kinesin-mediated transport pathways with restricted neuronal and subcellular localization. Mavlyutov, T.A., Cai, Y., Ferreira, P.A. Traffic (2002) [Pubmed]
  2. An autologous oral DNA vaccine protects against murine melanoma. Xiang, R., Lode, H.N., Chao, T.H., Ruehlmann, J.M., Dolman, C.S., Rodriguez, F., Whitton, J.L., Overwijk, W.W., Restifo, N.P., Reisfeld, R.A. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  3. Efficient amplification of melanoma-specific CD8+ T cells using artificial antigen presenting complex. Chang, J. Exp. Mol. Med. (2006) [Pubmed]
  4. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Pichler, A., Gast, A., Seeler, J.S., Dejean, A., Melchior, F. Cell (2002) [Pubmed]
  5. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Mahajan, R., Delphin, C., Guan, T., Gerace, L., Melchior, F. Cell (1997) [Pubmed]
  6. Cyclophilin-related protein RanBP2 acts as chaperone for red/green opsin. Ferreira, P.A., Nakayama, T.A., Pak, W.L., Travis, G.H. Nature (1996) [Pubmed]
  7. RanGAP1*SUMO1 is phosphorylated at the onset of mitosis and remains associated with RanBP2 upon NPC disassembly. Swaminathan, S., Kiendl, F., Körner, R., Lupetti, R., Hengst, L., Melchior, F. J. Cell Biol. (2004) [Pubmed]
  8. The zinc finger cluster domain of RanBP2 is a specific docking site for the nuclear export factor, exportin-1. Singh, B.B., Patel, H.H., Roepman, R., Schick, D., Ferreira, P.A. J. Biol. Chem. (1999) [Pubmed]
  9. GTP hydrolysis links initiation and termination of nuclear import on the nucleoporin nup358. Yaseen, N.R., Blobel, G. J. Biol. Chem. (1999) [Pubmed]
  10. The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. Kirsh, O., Seeler, J.S., Pichler, A., Gast, A., Müller, S., Miska, E., Mathieu, M., Harel-Bellan, A., Kouzarides, T., Melchior, F., Dejean, A. EMBO J. (2002) [Pubmed]
  11. Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Zhang, H., Saitoh, H., Matunis, M.J. Mol. Cell. Biol. (2002) [Pubmed]
  12. Nup358 integrates nuclear envelope breakdown with kinetochore assembly. Salina, D., Enarson, P., Rattner, J.B., Burke, B. J. Cell Biol. (2003) [Pubmed]
  13. Parkin ubiquitinates and promotes the degradation of RanBP2. Um, J.W., Min, d.o. .S., Rhim, H., Kim, J., Paik, S.R., Chung, K.C. J. Biol. Chem. (2006) [Pubmed]
  14. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. Wu, J., Matunis, M.J., Kraemer, D., Blobel, G., Coutavas, E. J. Biol. Chem. (1995) [Pubmed]
  15. Cell cycle-dependent phosphorylation of nucleoporins and nuclear pore membrane protein Gp210. Favreau, C., Worman, H.J., Wozniak, R.W., Frappier, T., Courvalin, J.C. Biochemistry (1996) [Pubmed]
  16. Isoaspartyl Post-translational Modification Triggers Anti-tumor T and B Lymphocyte Immunity. Doyle, H.A., Zhou, J., Wolff, M.J., Harvey, B.P., Roman, R.M., Gee, R.J., Koski, R.A., Mamula, M.J. J. Biol. Chem. (2006) [Pubmed]
  17. Role of proline residues in the expression and function of the human noradrenaline transporter. Paczkowski, F.A., Bryan-Lluka, L.J. J. Neurochem. (2004) [Pubmed]
  18. RanBP2/Nup358 provides a major binding site for NXF1-p15 dimers at the nuclear pore complex and functions in nuclear mRNA export. Forler, D., Rabut, G., Ciccarelli, F.D., Herold, A., Köcher, T., Niggeweg, R., Bork, P., Ellenberg, J., Izaurralde, E. Mol. Cell. Biol. (2004) [Pubmed]
  19. Solution structure of the Ran-binding domain 2 of RanBP2 and its interaction with the C terminus of Ran. Geyer, J.P., Döker, R., Kremer, W., Zhao, X., Kuhlmann, J., Kalbitzer, H.R. J. Mol. Biol. (2005) [Pubmed]
  20. Different structural and kinetic requirements for the interaction of Ran with the Ran-binding domains from RanBP2 and importin-beta. Villa Braslavsky, C.I., Nowak, C., Görlich, D., Wittinghofer, A., Kuhlmann, J. Biochemistry (2000) [Pubmed]
  21. The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type. Pichler, A., Knipscheer, P., Saitoh, H., Sixma, T.K., Melchior, F. Nat. Struct. Mol. Biol. (2004) [Pubmed]
  22. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Ma, Z., Hill, D.A., Collins, M.H., Morris, S.W., Sumegi, J., Zhou, M., Zuppan, C., Bridge, J.A. Genes Chromosomes Cancer (2003) [Pubmed]
  23. Identification of a novel Ran binding protein 2 related gene (RANBP2L1) and detection of a gene cluster on human chromosome 2q11-q12. Nothwang, H.G., Rensing, C., Kübler, M., Denich, D., Brandl, B., Stubanus, M., Haaf, T., Kurnit, D., Hildebrandt, F. Genomics (1998) [Pubmed]
  24. A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export. Kehlenbach, R.H., Dickmanns, A., Kehlenbach, A., Guan, T., Gerace, L. J. Cell Biol. (1999) [Pubmed]
  25. Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 enzymes. Miyauchi, Y., Yogosawa, S., Honda, R., Nishida, T., Yasuda, H. J. Biol. Chem. (2002) [Pubmed]
  26. RanGTP targets p97 to RanBP2, a filamentous protein localized at the cytoplasmic periphery of the nuclear pore complex. Delphin, C., Guan, T., Melchior, F., Gerace, L. Mol. Biol. Cell (1997) [Pubmed]
  27. Inhibitory effect of the polyinosinic-polycytidylic acid/cationic liposome on the progression of murine B16F10 melanoma. Fujimura, T., Nakagawa, S., Ohtani, T., Ito, Y., Aiba, S. Eur. J. Immunol. (2006) [Pubmed]
  28. An altered peptide ligand for na??ve cytotoxic T lymphocyte epitope of TRP-2((180-188)) enhanced immunogenicity. Tang, Y., Lin, Z., Ni, B., Wei, J., Han, J., Wang, H., Wu, Y. Cancer Immunol. Immunother. (2007) [Pubmed]
WikiGenes - Universities