The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

KIF5B  -  kinesin family member 5B

Homo sapiens

Synonyms: Conventional kinesin heavy chain, HEL-S-61, KINH, KNS, KNS1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of KIF5B

 

High impact information on KIF5B

  • This mitochondrial phenotype was reversed by an exogenous expression of KIF5B, and a subcellular fractionation revealed that KIF5B is associated with mitochondria [6].
  • Recent research has indicated that the principal component of kinesin, the kinesin heavy chain, is but one member of an extended superfamily of kinesin-like microtubule motor proteins [7].
  • Although a single kinesin motor has been thought to serve all cell types, we document here that neurons express a second conventional kinesin heavy chain (nKHC) that is 65% identical in amino acid sequence to the ubiquitously expressed kinesin heavy chain (uKHC) [8].
  • Inactive Kinesin-1 molecules are folded and autoinhibited such that the KHC tail blocks the initial interaction of the KHC motor with the microtubule [9].
  • The recruitment of KHC to mitochondria is, in part, determined by the NH(2) terminus-splicing variant of milton [10].
 

Chemical compound and disease context of KIF5B

 

Biological context of KIF5B

 

Anatomical context of KIF5B

 

Associations of KIF5B with chemical compounds

  • The mutation occurs in the family in which the SPG10 locus was originally identified, at an invariant asparagine residue that, when mutated in orthologous kinesin heavy chain motor proteins, prevents stimulation of the motor ATPase by microtubule-binding [1].
  • TNF treatment induced dissociation of the heavy chain kinesin family-5B (KIF5B) protein from tubulin in axons but not cell bodies as determined by lifetime-based F??rster resonance energy transfer (FRET) analysis [20].
  • Altering the number and distribution of microtubules with taxol or nocodazole produced corresponding changes in the localization of the expressed kinesin heavy chain [18].
  • The results point to a model in which one critical cysteine per kinesin heavy chain is relatively inaccessible to solvent [21].
  • Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent [10].
 

Physical interactions of KIF5B

 

Regulatory relationships of KIF5B

  • KIF5C and KIF5B are specifically expressed in a subset of neuroretinal cells and differentially localize with RanBP2 and importin-beta in distinct compartments [25].
 

Other interactions of KIF5B

 

Analytical, diagnostic and therapeutic context of KIF5B

  • In this study we employed a yeast two-hybrid assay to identify additional binding partners of the kinesin heavy chain isoform KIF5B [13].
  • Amplification of the genomic breakpoint by bubble PCR revealed a novel fusion between KIF5B at 10p11 and PDGFRA at 4q12 [15].
  • This predicted hydrophobic, alpha-helical coiled-coil interaction is supported by both circular dichroism spectroscopy of the recombinant kinesin heavy chain fragment 771-963, which displays an alpha-helical content of 70%, and the resistance of the heavy/light chain interaction to high salt (0.5 M) [29].
  • Here, we report that the microinjection of KHC-specific antibodies into these cells has no effect on mitosis or ER membrane organization, even though one such antibody, SUK4, blocks kinesin-driven motility in vitro and in mammalian cells [30].
  • Immunolocalization of kinesin at both the light and electron microscopy levels in NRK cells using the H1 monoclonal antibody to kinesin heavy chain, revealed kinesin to be associated with all membranes of the ER/Golgi system [31].

References

  1. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Reid, E., Kloos, M., Ashley-Koch, A., Hughes, L., Bevan, S., Svenson, I.K., Graham, F.L., Gaskell, P.C., Dearlove, A., Pericak-Vance, M.A., Rubinsztein, D.C., Marchuk, D.A. Am. J. Hum. Genet. (2002) [Pubmed]
  2. Kinesin light chain in a eubacterium. Celerin, M., Gilpin, A.A., Dossantos, G., Laudenbach, D.E., Clarke, M.W., Beushausen, S. DNA Cell Biol. (1997) [Pubmed]
  3. Two binding partners cooperate to activate the molecular motor Kinesin-1. Blasius, T.L., Cai, D., Jih, G.T., Toret, C.P., Verhey, K.J. J. Cell Biol. (2007) [Pubmed]
  4. Ganciclovir prodrug therapy is effective in a murine xenotransplant model of human lung cancer. Kurdow, R., Boehle, A.S., Haye, S., Boenicke, L., Schniewind, B., Dohrmann, P., Kalthoff, H. Ann. Thorac. Surg. (2002) [Pubmed]
  5. Differential display of messenger ribonucleic acid: a useful technique for analyzing differential gene expression in human brain tumors. Uchiyama, C.M., Zhu, J., Carroll, R.S., Leon, S.P., Black, P.M. Neurosurgery (1995) [Pubmed]
  6. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Tanaka, Y., Kanai, Y., Okada, Y., Nonaka, S., Takeda, S., Harada, A., Hirokawa, N. Cell (1998) [Pubmed]
  7. The kinesin superfamily: tails of functional redundancy. Goldstein, L.S. Trends Cell Biol. (1991) [Pubmed]
  8. Cloning and localization of a conventional kinesin motor expressed exclusively in neurons. Niclas, J., Navone, F., Hom-Booher, N., Vale, R.D. Neuron (1994) [Pubmed]
  9. Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells. Cai, D., Hoppe, A.D., Swanson, J.A., Verhey, K.J. J. Cell Biol. (2007) [Pubmed]
  10. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. Glater, E.E., Megeath, L.J., Stowers, R.S., Schwarz, T.L. J. Cell Biol. (2006) [Pubmed]
  11. Selective uptake by cancer cells of liposomes coated with polysaccharides bearing 1-aminolactose. Matsukawa, S., Yamamoto, M., Ichinose, K., Ohata, N., Ishii, N., Kohji, T., Akiyoshi, K., Sunamoto, J., Kanematsu, T. Anticancer Res. (2000) [Pubmed]
  12. The motor protein kinesin-1 links neurofibromin and merlin in a common cellular pathway of neurofibromatosis. Hakimi, M.A., Speicher, D.W., Shiekhattar, R. J. Biol. Chem. (2002) [Pubmed]
  13. The ribosome receptor, p180, interacts with kinesin heavy chain, KIF5B. Diefenbach, R.J., Diefenbach, E., Douglas, M.W., Cunningham, A.L. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  14. The heavy chain of conventional kinesin interacts with the SNARE proteins SNAP25 and SNAP23. Diefenbach, R.J., Diefenbach, E., Douglas, M.W., Cunningham, A.L. Biochemistry (2002) [Pubmed]
  15. Identification of a novel imatinib responsive KIF5B-PDGFRA fusion gene following screening for PDGFRA overexpression in patients with hypereosinophilia. Score, J., Curtis, C., Waghorn, K., Stalder, M., Jotterand, M., Grand, F.H., Cross, N.C. Leukemia (2006) [Pubmed]
  16. Phosphorylation-dependent interaction of kinesin light chain 2 and the 14-3-3 protein. Ichimura, T., Wakamiya-Tsuruta, A., Itagaki, C., Taoka, M., Hayano, T., Natsume, T., Isobe, T. Biochemistry (2002) [Pubmed]
  17. The functional organization of mitochondrial genomes in human cells. Iborra, F.J., Kimura, H., Cook, P.R. BMC Biol. (2004) [Pubmed]
  18. Cloning and expression of a human kinesin heavy chain gene: interaction of the COOH-terminal domain with cytoplasmic microtubules in transfected CV-1 cells. Navone, F., Niclas, J., Hom-Booher, N., Sparks, L., Bernstein, H.D., McCaffrey, G., Vale, R.D. J. Cell Biol. (1992) [Pubmed]
  19. Light chain-dependent regulation of Kinesin's interaction with microtubules. Verhey, K.J., Lizotte, D.L., Abramson, T., Barenboim, L., Schnapp, B.J., Rapoport, T.A. J. Cell Biol. (1998) [Pubmed]
  20. Unloading kinesin transported cargoes from the tubulin track via the inflammatory c-Jun N-terminal kinase pathway. Stagi, M., Gorlovoy, P., Larionov, S., Takahashi, K., Neumann, H. FASEB J. (2006) [Pubmed]
  21. n-ethylmaleimide and ethacrynic acid inhibit kinesin binding to microtubules in a motility assay. Walker, R.A., O'Brien, E.T., Epstein, D.L., Sheetz, M.P. Cell Motil. Cytoskeleton (1997) [Pubmed]
  22. Mapping the GRIF-1 Binding Domain of the Kinesin, KIF5C, Substantiates a Role for GRIF-1 as an Adaptor Protein in the Anterograde Trafficking of Cargoes. Smith, M.J., Pozo, K., Brickley, K., Stephenson, F.A. J. Biol. Chem. (2006) [Pubmed]
  23. DISC1 regulates the transport of the NUDEL/LIS1/14-3-3epsilon complex through kinesin-1. Taya, S., Shinoda, T., Tsuboi, D., Asaki, J., Nagai, K., Hikita, T., Kuroda, S., Kuroda, K., Shimizu, M., Hirotsune, S., Iwamatsu, A., Kaibuchi, K. J. Neurosci. (2007) [Pubmed]
  24. p120 catenin associates with kinesin and facilitates the transport of cadherin-catenin complexes to intercellular junctions. Chen, X., Kojima, S., Borisy, G.G., Green, K.J. J. Cell Biol. (2003) [Pubmed]
  25. Identification of RanBP2- and kinesin-mediated transport pathways with restricted neuronal and subcellular localization. Mavlyutov, T.A., Cai, Y., Ferreira, P.A. Traffic (2002) [Pubmed]
  26. DISC1 regulates neurotrophin-induced axon elongation via interaction with Grb2. Shinoda, T., Taya, S., Tsuboi, D., Hikita, T., Matsuzawa, R., Kuroda, S., Iwamatsu, A., Kaibuchi, K. J. Neurosci. (2007) [Pubmed]
  27. Transport of fragile X mental retardation protein via granules in neurites of PC12 cells. De Diego Otero, Y., Severijnen, L.A., van Cappellen, G., Schrier, M., Oostra, B., Willemsen, R. Mol. Cell. Biol. (2002) [Pubmed]
  28. Transport of ER vesicles on actin filaments in neurons by myosin V. Tabb, J.S., Molyneaux, B.J., Cohen, D.L., Kuznetsov, S.A., Langford, G.M. J. Cell. Sci. (1998) [Pubmed]
  29. The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Diefenbach, R.J., Mackay, J.P., Armati, P.J., Cunningham, A.L. Biochemistry (1998) [Pubmed]
  30. Roles of kinesin and kinesin-like proteins in sea urchin embryonic cell division: evaluation using antibody microinjection. Wright, B.D., Terasaki, M., Scholey, J.M. J. Cell Biol. (1993) [Pubmed]
  31. Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic. Lippincott-Schwartz, J., Cole, N.B., Marotta, A., Conrad, P.A., Bloom, G.S. J. Cell Biol. (1995) [Pubmed]
 
WikiGenes - Universities