The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Slc32a1  -  solute carrier family 32 (GABA vesicular...

Rattus norvegicus

Synonyms: GABA and glycine transporter, Solute carrier family 32 member 1, Vesicular GABA transporter, Vesicular inhibitory amino acid transporter, Vgat, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Slc32a1


High impact information on Slc32a1

  • Comparison of this vesicular GABA transporter (VGAT) with a vesicular transporter for monoamines shows that there are differences in the bioenergetic dependence of transport, and these presumably account for the differences in structure [2].
  • Immunohistochemical studies demonstrate synaptic colocalization of the vesicular glutamate transporter 3 with the vesicular GABA transporter, indicating that GABA, glycine and glutamate are released from single MNTB terminals [3].
  • Here, we propose that there is a functional and structural coupling between the synthesis of gamma-aminobutyric acid (GABA) by membrane-associated GAD and its packaging into synaptic vesicles (SVs) by vesicular GABA transporter (VGAT) [4].
  • Here, we test the hypothesis that the putative transporter is the vesicular inhibitory amino acid transporter (VIAAT), a neuronal transmembrane transporter of GABA and glycine [5].
  • Expression of the vesicular inhibitory amino acid transporter in pancreatic islet cells: distribution of the transporter within rat islets [5].

Chemical compound and disease context of Slc32a1


Biological context of Slc32a1


Anatomical context of Slc32a1


Associations of Slc32a1 with chemical compounds

  • Here, we reveal a dynamic scaling in vesicular excitatory (vesicular glutamate transporters VGLUT1 and VGLUT2) and inhibitory (vesicular inhibitory amino acid transporter VIAAT) transporter mRNA and synaptic protein expression in rat neocortical neuronal cultures, using a well established in vitro protocol to induce homeostatic plasticity [17].
  • VGLUT3-immunoreactive axon terminals were immunopositive for either vesicular GABA transporter (VGAT) or serotonin [18].
  • The slower band corresponded to a phosphorylated form of VIAAT as it was converted to the faster one by treating brain homogenates with alkaline phosphatase or with an endogenous phosphatase identified as type 2A protein-serine/threonine phosphatase using okadaic acid [7].

Other interactions of Slc32a1

  • Following transient focal ischemia, mRNA expression of the vesicular GABA transporter (VGAT) decreased significantly by 3 h of reperfusion and remained at a significantly lower level than sham until at least 72 h of reperfusion [6].
  • We found that GABAergic terminals, characterized by VIAAT and GAD-65 expression, differentiated 3 to 7 days after the glutamatergic endings [19].
  • Immunoblotting analysis revealed that rat brain VIAAT migrated as a doublet during sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with a predominant slower band in all areas examined except olfactory bulb and retina [7].
  • Quantitative analysis revealed that until 5 DIV most gephyrin clusters were not adjacent to VIAAT-positive profiles, but became associated with them at later stages [20].
  • Abnormal synapsin immunolabelling was also observed between days 8 and 60 after axotomy but we detected no change in VIAAT immunoreactivity [21].

Analytical, diagnostic and therapeutic context of Slc32a1


  1. Stable expression of the vesicular GABA transporter following photothrombotic infarct in rat brain. Frahm, C., Siegel, G., Grass, S., Witte, O.W. Neuroscience (2006) [Pubmed]
  2. Identification and characterization of the vesicular GABA transporter. McIntire, S.L., Reimer, R.J., Schuske, K., Edwards, R.H., Jorgensen, E.M. Nature (1997) [Pubmed]
  3. Inhibitory synapses in the developing auditory system are glutamatergic. Gillespie, D.C., Kim, G., Kandler, K. Nat. Neurosci. (2005) [Pubmed]
  4. Demonstration of functional coupling between gamma -aminobutyric acid (GABA) synthesis and vesicular GABA transport into synaptic vesicles. Jin, H., Wu, H., Osterhaus, G., Wei, J., Davis, K., Sha, D., Floor, E., Hsu, C.C., Kopke, R.D., Wu, J.Y. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  5. Expression of the vesicular inhibitory amino acid transporter in pancreatic islet cells: distribution of the transporter within rat islets. Chessler, S.D., Simonson, W.T., Sweet, I.R., Hammerle, L.P. Diabetes (2002) [Pubmed]
  6. Decreased expression of vesicular GABA transporter, but not vesicular glutamate, acetylcholine and monoamine transporters in rat brain following focal ischemia. Vemuganti, R. Neurochem. Int. (2005) [Pubmed]
  7. Constitutive phosphorylation of the vesicular inhibitory amino acid transporter in rat central nervous system. Bedet, C., Isambert, M.F., Henry, J.P., Gasnier, B. J. Neurochem. (2000) [Pubmed]
  8. Functional reconstitution of the gamma-aminobutyric acid transporter from synaptic vesicles using artificial ion gradients. Hell, J.W., Edelmann, L., Hartinger, J., Jahn, R. Biochemistry (1991) [Pubmed]
  9. Brain-derived neurotrophic factor controls functional differentiation and microcircuit formation of selectively isolated fast-spiking GABAergic interneurons. Berghuis, P., Dobszay, M.B., Sousa, K.M., Schulte, G., Mager, P.P., Härtig, W., Görcs, T.J., Zilberter, Y., Ernfors, P., Harkany, T. Eur. J. Neurosci. (2004) [Pubmed]
  10. Vesicular inhibitory amino acid transporter is expressed in gamma-aminobutyric acid (GABA)-containing astrocytes in rat pineal glands. Echigo, N., Moriyama, Y. Neurosci. Lett. (2004) [Pubmed]
  11. Plasticity of the GABAergic phenotype of the "glutamatergic" granule cells of the rat dentate gyrus. Gutiérrez, R., Romo-Parra, H., Maqueda, J., Vivar, C., Ramìrez, M., Morales, M.A., Lamas, M. J. Neurosci. (2003) [Pubmed]
  12. Immunocytochemical localization of candidates for vesicular glutamate transporters in the rat cerebral cortex. Fujiyama, F., Furuta, T., Kaneko, T. J. Comp. Neurol. (2001) [Pubmed]
  13. Morphologically identified glycinergic synapses in the hippocampus. Danglot, L., Rostaing, P., Triller, A., Bessis, A. Mol. Cell. Neurosci. (2004) [Pubmed]
  14. An Intrinsic gamma-aminobutyric acid (GABA)ergic system in the adrenal cortex: findings from human and rat adrenal glands and the NCI-H295R cell line. Metzeler, K., Agoston, A., Gratzl, M. Endocrinology (2004) [Pubmed]
  15. Functional and molecular characterization of neuronal nicotinic ACh receptors in rat CA1 hippocampal neurons. Sudweeks, S.N., Yakel, J.L. J. Physiol. (Lond.) (2000) [Pubmed]
  16. Activity-dependent expression of simultaneous glutamatergic and GABAergic neurotransmission from the mossy fibers in vitro. Gutiérrez, R. J. Neurophysiol. (2002) [Pubmed]
  17. Homeostatic scaling of vesicular glutamate and GABA transporter expression in rat neocortical circuits. De Gois, S., Schäfer, M.K., Defamie, N., Chen, C., Ricci, A., Weihe, E., Varoqui, H., Erickson, J.D. J. Neurosci. (2005) [Pubmed]
  18. Chemically specific circuit composed of vesicular glutamate transporter 3- and preprotachykinin B-producing interneurons in the rat neocortex. Hioki, H., Fujiyama, F., Nakamura, K., Wu, S.X., Matsuda, W., Kaneko, T. Cereb. Cortex (2004) [Pubmed]
  19. Association of gephyrin with synaptic and extrasynaptic GABAA receptors varies during development in cultured hippocampal neurons. Danglot, L., Triller, A., Bessis, A. Mol. Cell. Neurosci. (2003) [Pubmed]
  20. Formation of mixed glycine and GABAergic synapses in cultured spinal cord neurons. Dumoulin, A., Lévi, S., Riveau, B., Gasnier, B., Triller, A. Eur. J. Neurosci. (2000) [Pubmed]
  21. Modulation of glycine receptor subunits and gephyrin expression in the rat facial nucleus after axotomy. Eleore, L., Vassias, I., Vidal, P.P., Triller, A., de Waele, C. Eur. J. Neurosci. (2005) [Pubmed]
  22. IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. Dumoulin, A., Triller, A., Dieudonné, S. J. Neurosci. (2001) [Pubmed]
WikiGenes - Universities