The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Syn1  -  synapsin I

Rattus norvegicus

Synonyms: Synapsin I, Synapsin-1
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Syn1

 

Psychiatry related information on Syn1

  • Supplementation of omega-3 fatty acids in the diet counteracted all of the studied effects of FPI, that is, normalized levels of BDNF and associated synapsin I and CREB, reduced oxidative damage, and counteracted learning disability [6].
 

High impact information on Syn1

 

Chemical compound and disease context of Syn1

 

Biological context of Syn1

 

Anatomical context of Syn1

 

Associations of Syn1 with chemical compounds

  • Taken together, our results demonstrate new aspects of the glucose-dependent actions of ERK1/2 in beta-cells exerted on cytoplasmic proteins, including synapsin I, and participating in the overall glucose-induced insulin secretion [17].
  • In a synaptosomal preparation, brain-derived neurotrophic factor (BDNF) increased mitogen-activated protein (MAP) kinase-dependent synapsin I phosphorylation and acutely facilitated evoked glutamate release [21].
  • In the present study, two crystal structures of the C domain of rat synapsin I (rSynI-C) in complex with Ca(2+) and ATP reveal that this protein can form a tetramer and that a flexible loop (the "multifunctional loop") contacts bound ATP [22].
  • In addition, synapsin I, phospho-synapsin I, cyclic-AMP response-element-binding protein (CREB), phospho-CREB, calcium-calmodulin-dependent protein kinase II (CAMKII), mitogen-activated protein (MAP) kinase I and II (MAPKI and MAPKII), and protein kinase C (PKC) were analyzed by western blot [23].
  • Immunohistochemical detection of synapsin I and microtubule associated protein 2 revealed the synapse loss between neurons intoxicated by aluminum maltolate [24].
 

Physical interactions of Syn1

  • Male adult rats were maintained on a HF diet for 2 months with or without 500 IU/kg of vitamin E. Supplementation of the HF diet with vitamin E dramatically reduced oxidative damage, normalized levels of BDNF, synapsin I and cyclic AMP-response element-binding protein (CREB), caused by the consumption of the HF diet [25].
  • Synapsin I interacts with c-Src and stimulates its tyrosine kinase activity [26].
  • Neural nitric oxide synthase (nNOS), synapsin I, and nNOS adapter protein (CAPON) constitute a ternary complex necessary for specific NO and synapsin functions at a presynaptic level [27].
 

Enzymatic interactions of Syn1

  • FPI alone resulted in significantly elevated levels of hippocampal phosphorylated synapsin I and phosphorylated cyclic AMP response element-binding-protein (CREB) at postinjury day 7, of which phosphorylated CREB remained elevated at postinjury day 21 [28].
  • A calcium/calmodulin-dependent protein kinase from mammalian brain that phosphorylates Synapsin I: partial purification and characterization [29].
  • We reported previously that phosphorylated neuromodulin and phosphorylated synapsin I content increased in the striata of amphetamine-sensitized rats; however, the neuronal pathways responsible for the increase were unclear [30].
 

Co-localisations of Syn1

 

Regulatory relationships of Syn1

 

Other interactions of Syn1

  • ATP binding to the different synapsins is directly regulated by Ca2+ in a dramatically different fashion: Ca2+ activates ATP binding to synapsin I, has no effect on synapsin II, and inhibits synapsin III [16].
  • Synapsin III, a novel synapsin with an unusual regulation by Ca2+ [16].
  • To figure out the effect of PLD on synapsin I expression, we treated the neural stem cells with phorbol myristate acetate (PMA) to stimulate PLD activity [19].
  • These results indicate that exercise induces plasticity of select hippocampal transsynaptic circuitry, possibly comprising a spatial restriction on synapsin I regulation by BDNF [37].
  • BDNF and synapsin I mRNAs were lower and NT-3 levels were higher in the lumbar hemicord ipsilateral to the BTX-A injection [38].
 

Analytical, diagnostic and therapeutic context of Syn1

References

  1. Alterations in BDNF and synapsin I within the occipital cortex and hippocampus after mild traumatic brain injury in the developing rat: reflections of injury-induced neuroplasticity. Griesbach, G.S., Hovda, D.A., Molteni, R., Gomez-Pinilla, F. J. Neurotrauma (2002) [Pubmed]
  2. Increases in mRNA levels for synapsin I but not synapsin II in the hippocampus of the rat kindling model of epilepsy. Morimoto, K., Sato, K., Sato, S., Suemaru, S., Sato, T., Yamada, N., Hayabara, T. Seizure : the journal of the British Epilepsy Association. (1998) [Pubmed]
  3. Efficient marking of neural stem cell-derived neurons with a modified murine embryonic stem cell virus, MESV2. Owens, G.C., Mistry, S., Edelman, G.M., Crossin, K.L. Gene Ther. (2002) [Pubmed]
  4. Synapsin II. Mapping of a domain in the NH2-terminal region which binds to small synaptic vesicles. Thiel, G., Südhof, T.C., Greengard, P. J. Biol. Chem. (1990) [Pubmed]
  5. Endurance exercise regimens induce differential effects on brain-derived neurotrophic factor, synapsin-I and insulin-like growth factor I after focal ischemia. Ploughman, M., Granter-Button, S., Chernenko, G., Tucker, B.A., Mearow, K.M., Corbett, D. Neuroscience (2005) [Pubmed]
  6. Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. Wu, A., Ying, Z., Gomez-Pinilla, F. J. Neurotrauma (2004) [Pubmed]
  7. Synaptic vesicle-associated Ca2+/calmodulin-dependent protein kinase II is a binding protein for synapsin I. Benfenati, F., Valtorta, F., Rubenstein, J.L., Gorelick, F.S., Greengard, P., Czernik, A.J. Nature (1992) [Pubmed]
  8. Induction of formation of presynaptic terminals in neuroblastoma cells by synapsin IIb. Han, H.Q., Nichols, R.A., Rubin, M.R., Bähler, M., Greengard, P. Nature (1991) [Pubmed]
  9. Aberrant neurites and synaptic vesicle protein deficiency in synapsin II-depleted neurons. Ferreira, A., Kosik, K.S., Greengard, P., Han, H.Q. Science (1994) [Pubmed]
  10. Synapsin dispersion and reclustering during synaptic activity. Chi, P., Greengard, P., Ryan, T.A. Nat. Neurosci. (2001) [Pubmed]
  11. Effects of nefiracetam on the levels of brain-derived neurotrophic factor and synapsin I mRNA and protein in the hippocampus of microsphere-embolized rats. Ando, T., Takagi, N., Takagi, K., Kago, T., Takeo, S. Eur. J. Pharmacol. (2005) [Pubmed]
  12. Opiate receptor agonists regulate phosphorylation of synapsin I in cocultures of rat spinal cord and dorsal root ganglion. Nah, S.Y., Saya, D., Barg, J., Vogel, Z. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  13. Microsphere embolism-induced changes in noradrenaline release in the cerebral cortex in rats. Hayashi, H., Sato, K., Kuruhara, Y., Takeo, S. Brain Res. (1998) [Pubmed]
  14. An experimental study on the course of trans-synaptic propagation of neural activity and plasticity in the hippocampus in kainate-induced epilepsy. Sato, K., Abe, K. Brain Res. Bull. (2001) [Pubmed]
  15. Rabies virus entry into cultured rat hippocampal neurons. Lewis, P., Lentz, T.L. J. Neurocytol. (1998) [Pubmed]
  16. Synapsin III, a novel synapsin with an unusual regulation by Ca2+. Hosaka, M., Südhof, T.C. J. Biol. Chem. (1998) [Pubmed]
  17. Extracellularly regulated kinases 1/2 (p44/42 mitogen-activated protein kinases) phosphorylate synapsin I and regulate insulin secretion in the MIN6 beta-cell line and islets of Langerhans. Longuet, C., Broca, C., Costes, S., Hani, e.l. .H., Bataille, D., Dalle, S. Endocrinology (2005) [Pubmed]
  18. Determination and analysis of the primary structure of the nerve terminal specific phosphoprotein, synapsin I. McCaffery, C.A., DeGennaro, L.J. EMBO J. (1986) [Pubmed]
  19. Role of phospholipase D1 in neurite outgrowth of neural stem cells. Yoon, M.S., Yon, C., Park, S.Y., Oh, D.Y., Han, A.H., Kim, D.S., Han, J.S. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  20. Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Chi, P., Greengard, P., Ryan, T.A. Neuron (2003) [Pubmed]
  21. Synapsins as mediators of BDNF-enhanced neurotransmitter release. Jovanovic, J.N., Czernik, A.J., Fienberg, A.A., Greengard, P., Sihra, T.S. Nat. Neurosci. (2000) [Pubmed]
  22. Tetramerization and ATP binding by a protein comprising the A, B, and C domains of rat synapsin I. Brautigam, C.A., Chelliah, Y., Deisenhofer, J. J. Biol. Chem. (2004) [Pubmed]
  23. The upregulation of plasticity-related proteins following TBI is disrupted with acute voluntary exercise. Griesbach, G.S., Gomez-Pinilla, F., Hovda, D.A. Brain Res. (2004) [Pubmed]
  24. Brain-derived neurotrophic factor protects cultured rat hippocampal neurons from aluminum maltolate neurotoxicity. Kawahara, M., Kato-Negishi, M., Hosoda, R., Imamura, L., Tsuda, M., Kuroda, Y. J. Inorg. Biochem. (2003) [Pubmed]
  25. The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Wu, A., Ying, Z., Gomez-Pinilla, F. Eur. J. Neurosci. (2004) [Pubmed]
  26. Synapsin I interacts with c-Src and stimulates its tyrosine kinase activity. Onofri, F., Giovedì, S., Vaccaro, P., Czernik, A.J., Valtorta, F., De Camilli, P., Greengard, P., Benfenati, F. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  27. Nitric oxide synthase inhibition during synaptic maturation decreases synapsin I immunoreactivity in rat brain. Sánchez-Islas, E., León-Olea, M. Nitric Oxide (2004) [Pubmed]
  28. Voluntary exercise following traumatic brain injury: brain-derived neurotrophic factor upregulation and recovery of function. Griesbach, G.S., Hovda, D.A., Molteni, R., Wu, A., Gomez-Pinilla, F. Neuroscience (2004) [Pubmed]
  29. A calcium/calmodulin-dependent protein kinase from mammalian brain that phosphorylates Synapsin I: partial purification and characterization. Kennedy, M.B., McGuinness, T., Greengard, P. J. Neurosci. (1983) [Pubmed]
  30. Quantification of neuromodulin (GAP-43, B-50) and synapsin I in rat striata. Iwata, S., Nomoto, M., Fukuda, T. Nihon shinkei seishin yakurigaku zasshi = Japanese journal of psychopharmacology. (1999) [Pubmed]
  31. Distribution of Rab3a in rat nervous system: comparison with other synaptic vesicle proteins and neuropeptides. Li, J.Y., Jahn, R., Hou, X.E., Kling-Petersen, A., Dahlström, A. Brain Res. (1996) [Pubmed]
  32. Central neuronal synapse formation on micropatterned surfaces. Ma, W., Liu, Q.Y., Jung, D., Manos, P., Pancrazio, J.J., Schaffner, A.E., Barker, J.L., Stenger, D.A. Brain Res. Dev. Brain Res. (1998) [Pubmed]
  33. Activation of metabotropic glutamate receptors inhibits synapsin I phosphorylation in visceral sensory neurons. Hay, M., Hoang, C.J., Hasser, E.M., Price, E.M. J. Membr. Biol. (2000) [Pubmed]
  34. Differential expression of synapsins I and II among rat retinal synapses. Mandell, J.W., Czernik, A.J., De Camilli, P., Greengard, P., Townes-Anderson, E. J. Neurosci. (1992) [Pubmed]
  35. Covalent modification of synapsin I by a tetanus toxin-activated transglutaminase. Facchiano, F., Benfenati, F., Valtorta, F., Luini, A. J. Biol. Chem. (1993) [Pubmed]
  36. Protein phosphorylation and calcium uptake into rat forebrain synaptosomes: modulation by the sigma ligand, 1,3-ditolylguanidine. Brent, P.J., Herd, L., Saunders, H., Sim, A.T., Dunkley, P.R. J. Neurochem. (1997) [Pubmed]
  37. Exercise induces BDNF and synapsin I to specific hippocampal subfields. Vaynman, S., Ying, Z., Gómez-Pinilla, F. J. Neurosci. Res. (2004) [Pubmed]
  38. Afferent input modulates neurotrophins and synaptic plasticity in the spinal cord. Gómez-Pinilla, F., Ying, Z., Roy, R.R., Hodgson, J., Edgerton, V.R. J. Neurophysiol. (2004) [Pubmed]
  39. Localization of synapsin-I and PSD-95 in developing postnatal rat cerebellar cortex. Castejón, O.J., Fuller, L., Dailey, M.E. Brain Res. Dev. Brain Res. (2004) [Pubmed]
  40. Translocational changes of localization of synapsin in axonal sprouts of regenerating rat sciatic nerves after ligation crush injury. Kwon, K.B., Kim, J.S., Chang, B.J. J. Vet. Sci. (2000) [Pubmed]
  41. Suppression of synapsin II inhibits the formation and maintenance of synapses in hippocampal culture. Ferreira, A., Han, H.Q., Greengard, P., Kosik, K.S. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  42. Development of synapsin I and synapsin II in intraocular hippocampal transplants. Bergman, H., Browning, M., Granholm, A.C. Hippocampus. (1992) [Pubmed]
  43. Differential distribution of synapsin IIa and IIb mRNAs in various brain structures and the effect of chronic morphine administration on the regional expression of these isoforms. Matus-Leibovitch, N., Nevo, I., Vogel, Z. Brain Res. Mol. Brain Res. (1997) [Pubmed]
 
WikiGenes - Universities