The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

COX1  -  cytochrome c oxidase subunit 1

Saccharomyces cerevisiae S288c

Synonyms: Cytochrome c oxidase polypeptide I, Cytochrome c oxidase subunit 1, OXI3, Q0045
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of COX1

 

High impact information on COX1

  • Group II introns al1 and al2 of the yeast mtDNA cox1 gene encode reverse transcriptase-like proteins that function in RNA splicing and may play a role in intron mobility and excision [2].
  • One member of this intron class (aI5c in the gene for cytochrome c oxidase subunit I) is capable of self-splicing in vitro, giving correct exon-exon ligation and resulting in the appearance of both linear and lariat forms of the excised intron [3].
  • This maturase is required to splice the fourth intron of this gene and to splice the fourth intron of the mitochondrial gene oxi3 encoding cytochrome oxidase subunit I. We have cloned the nuclear gene NAM2, which codes for two overlapping RNAs, 3.2 kb and 3.0 kb long, which are transcribed in the same direction but differ at their 5' ends [4].
  • Two intron sequences in yeast mitochondrial COX1 gene: homology among URF-containing introns and strain-dependent variation in flanking exons [5].
  • We have unambiguously assigned the alpha-event senDNA (the 2.6 kb monomer) to the oxi3 gene locus and the beta-event senDNA to the oxi2 gene locus [6].
 

Biological context of COX1

  • Expression of the yeast mitochondrial genes COX1 and COX3, which encode subunits I and III of cytochrome oxidase, respectively, is controlled by a common nuclear-encoded trans-acting factor [7].
  • Finally, one point mutation (R129D) did not abolish Nam1p binding, yet displayed an obvious COX1/CYTB transcript defect [8].
  • Introns aI1 and aI2 found in the gene COX1 in yeast mitochondria encode reverse transcriptases which promote site-specific insertion of the intron into intronless alleles ('homing') [9].
  • The mutant phenotype can be partially rescued by the presence in the same cell of wild-type mitochondrial DNA and a rho(-) deletion genome in which the 5'-UTR, first exon, and first intron of COX1 are fused to the fourth codon of ATP6 [10].
  • We have established the DNA sequence of two cis-dominant mutations located in the fourth intron, a14, of the yeast mitochondrial gene oxi3 [11].
 

Anatomical context of COX1

 

Associations of COX1 with chemical compounds

  • In a paromomycin-resistant background, mss1 and mto1 mutants are inefficient in processing the mitochondrial COX1 transcript for subunit 1 of cytochrome oxidase [16].
  • A nonreverting strain, which is respiratory deficient because of a deletion in the mitochondrial oxi3 gene, was bombarded with tungsten microprojectiles coated with DNA bearing sequences that could correct the oxi3 deletion [17].
  • The oxi3 locus was dissected by mutagenesis of DS6 with ethidium bromide and selection of new clones having less complex genotypes [13].
  • In the case of cytochrome c oxidase subunit V, correct NH2-terminal processing was also demonstrated with the purified matrix protease [18].
  • These included the precursors of the yeast proteins cytochrome c oxidase subunit Va, the F1-ATPase beta subunit, mitochondrial malate dehydrogenase, and the ATP/ADP carrier [19].
 

Physical interactions of COX1

  • The copper domain of Cox11 may be an important docking motif for Cox1 or a Cox1-associated protein [20].
 

Regulatory relationships of COX1

 

Other interactions of COX1

 

Analytical, diagnostic and therapeutic context of COX1

References

  1. Sequences from a prokaryotic genome or the mouse dihydrofolate reductase gene can restore the import of a truncated precursor protein into yeast mitochondria. Baker, A., Schatz, G. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  2. Reverse transcriptase activity associated with maturase-encoding group II introns in yeast mitochondria. Kennell, J.C., Moran, J.V., Perlman, P.S., Butow, R.A., Lambowitz, A.M. Cell (1993) [Pubmed]
  3. Excised group II introns in yeast mitochondria are lariats and can be formed by self-splicing in vitro. van der Veen, R., Arnberg, A.C., van der Horst, G., Bonen, L., Tabak, H.F., Grivell, L.A. Cell (1986) [Pubmed]
  4. The yeast nuclear gene NAM2 is essential for mitochondrial DNA integrity and can cure a mitochondrial RNA-maturase deficiency. Labouesse, M., Dujardin, G., Slonimski, P.P. Cell (1985) [Pubmed]
  5. Two intron sequences in yeast mitochondrial COX1 gene: homology among URF-containing introns and strain-dependent variation in flanking exons. Hensgens, L.A., Bonen, L., de Haan, M., van der Horst, G., Grivell, L.A. Cell (1983) [Pubmed]
  6. Are mitochondrial structural genes selectively amplified during senescence in Podospora anserina? Wright, R.M., Horrum, M.A., Cummings, D.J. Cell (1982) [Pubmed]
  7. Genetic evidence that different functional domains of the PET54 gene product facilitate expression of the mitochondrial genes COX1 and COX3 in Saccharomyces cerevisiae. Valencik, M.L., McEwen, J.E. Mol. Cell. Biol. (1991) [Pubmed]
  8. Nam1p, a protein involved in RNA processing and translation, is coupled to transcription through an interaction with yeast mitochondrial RNA polymerase. Rodeheffer, M.S., Boone, B.E., Bryan, A.C., Shadel, G.S. J. Biol. Chem. (2001) [Pubmed]
  9. Efficient integration of an intron RNA into double-stranded DNA by reverse splicing. Yang, J., Zimmerly, S., Perlman, P.S., Lambowitz, A.M. Nature (1996) [Pubmed]
  10. The Saccharomyces cerevisiae ATP22 Gene Codes for the Mitochondrial ATPase Subunit 6-Specific Translation Factor. Zeng, X., Hourset, A., Tzagoloff, A. Genetics (2007) [Pubmed]
  11. Critical sequences within mitochondrial introns: cis-dominant mutations of the "cytochrome-b-like" intron of the oxidase gene. Netter, P., Jacq, C., Carignani, G., Slonimski, P.P. Cell (1982) [Pubmed]
  12. Cloning and characterization of COX18, a Saccharomyces cerevisiae PET gene required for the assembly of cytochrome oxidase. Souza, R.L., Green-Willms, N.S., Fox, T.D., Tzagoloff, A., Nobrega, F.G. J. Biol. Chem. (2000) [Pubmed]
  13. Assembly of the mitochondrial membrane system. Physical map of the Oxi3 locus of yeast mitochondrial DNA. Bonitz, S.G., Coruzzi, G., Thalenfeld, B.E., Tzagoloff, A., Macino, G. J. Biol. Chem. (1980) [Pubmed]
  14. Effect of leader peptides on the permeability of mitochondria. Lu, Y., Beavis, A.D. J. Biol. Chem. (1997) [Pubmed]
  15. Topology of an amphiphilic mitochondrial signal sequence in the membrane-inserted state: a spin labeling study. Yu, Y.G., Thorgeirsson, T.E., Shin, Y.K. Biochemistry (1994) [Pubmed]
  16. MTO1 codes for a mitochondrial protein required for respiration in paromomycin-resistant mutants of Saccharomyces cerevisiae. Colby, G., Wu, M., Tzagoloff, A. J. Biol. Chem. (1998) [Pubmed]
  17. Mitochondrial transformation in yeast by bombardment with microprojectiles. Johnston, S.A., Anziano, P.Q., Shark, K., Sanford, J.C., Butow, R.A. Science (1988) [Pubmed]
  18. Import of proteins into mitochondria. Isolated yeast mitochondria and a solubilized matrix protease correctly process cytochrome c oxidase subunit V precursor at the NH2 terminus. Cerletti, N., Böhni, P.C., Suda, K. J. Biol. Chem. (1983) [Pubmed]
  19. A synthetic presequence reversibly inhibits protein import into yeast mitochondria. Glaser, S.M., Cumsky, M.G. J. Biol. Chem. (1990) [Pubmed]
  20. Functional analysis of the domains in Cox11. Carr, H.S., Maxfield, A.B., Horng, Y.C., Winge, D.R. J. Biol. Chem. (2005) [Pubmed]
  21. Disruption of the yeast nuclear PET54 gene blocks excision of mitochondrial intron aI5 beta from pre-mRNA for cytochrome c oxidase subunit I. Valencik, M.L., Kloeckener-Gruissem, B., Poyton, R.O., McEwen, J.E. EMBO J. (1989) [Pubmed]
  22. Mitochondrial protein synthesis is not required for efficient excision of intron aI5 beta from COX1 pre-mRNA in Saccharomyces cerevisiae. Johnson, C.H., McEwen, J.E. Mol. Gen. Genet. (1997) [Pubmed]
  23. Determinants for binding of a 40 kDa protein to the leaders of yeast mitochondrial mRNAs. Dekker, P.J., Stuurman, J., van Oosterum, K., Grivell, L.A. Nucleic Acids Res. (1992) [Pubmed]
  24. Mss51p, a putative translational activator of cytochrome c oxidase subunit-1 (COX1) mRNA, is required for synthesis of Cox1p in Saccharomyces cerevisiae. Siep, M., van Oosterum, K., Neufeglise, H., van der Spek, H., Grivell, L.A. Curr. Genet. (2000) [Pubmed]
  25. Isolation and characterization of QCR9, a nuclear gene encoding the 7.3-kDa subunit 9 of the Saccharomyces cerevisiae ubiquinol-cytochrome c oxidoreductase complex. An intron-containing gene with a conserved sequence occurring in the intron of COX4. Phillips, J.D., Schmitt, M.E., Brown, T.A., Beckmann, J.D., Trumpower, B.L. J. Biol. Chem. (1990) [Pubmed]
  26. Deletion of the COX7 gene in Saccharomyces cerevisiae reveals a role for cytochrome c oxidase subunit VII in assembly of remaining subunits. Calder, K.M., McEwen, J.E. Mol. Microbiol. (1991) [Pubmed]
  27. Suppressors of cis-acting splicing-deficient mutations that affect the ribozyme core of a group II intron. Robineau, S., Bergantino, E., Carignani, G., Michel, F., Netter, P. J. Mol. Biol. (1997) [Pubmed]
  28. Transposable group II introns in fission and budding yeast. Site-specific genomic instabilities and formation of group II IVS plDNAs. Schmidt, W.M., Schweyen, R.J., Wolf, K., Mueller, M.W. J. Mol. Biol. (1994) [Pubmed]
 
WikiGenes - Universities