The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

dinB  -  DNA polymerase IV

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK0232, JW0221, dinP
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of dinB

  • Remarkably, the umuC122::Tn5 allele of umuC, dinB, and certain forms of umuD gene products endow E. coli with the ability to withstand HU treatment (HUR) [1].
  • In this paper we show that the gene is identical to dinB, an SOS gene previously localized near the lac locus at 8 min, the function of which was shown to be required for mutagenesis of nonirradiated lambda phage infecting UV-preirradiated bacterial cells (termed lambdaUTM for lambda untargeted mutagenesis) [2].
  • Role of Pseudomonas aeruginosa dinB-Encoded DNA Polymerase IV in Mutagenesis [3].

High impact information on dinB

  • We report that the SOS-inducible, error-prone DNA polymerase (pol) IV, encoded by dinB, is required for adaptive point mutation in the E. coli lac operon [4].
  • In Escherichia coli, the dinB gene is required for the SOS-induced lambda untargeted mutagenesis pathway and confers a mutator phenotype to the cell when the gene product is overexpressed [5].
  • Here we show that, depending upon the nature of the DNA damage and its sequence context, the two additional SOS-inducible DNA polymerases, Pol II (polB) and Pol IV (dinB), are also involved in error-free and mutagenic translesion synthesis (TLS) [6].
  • Stationary-phase mutation in the bacterial chromosome: recombination protein and DNA polymerase IV dependence [7].
  • Furthermore, merely increasing the dinP gene expression, without UV irradiation or any other DNA-damaging treatment, resulted in a strong enhancement of mutagenesis in F'lac plasmids; at most, 800-fold increase in the G6-to-G5 change [2].

Chemical compound and disease context of dinB


Biological context of dinB


Anatomical context of dinB


Associations of dinB with chemical compounds

  • In addition, dinB and dinD in the presence of both nalidixic acid and H2O2 at the same time showed no synergistic responses [15].
  • Induction of dinB transcription mediated by ceftazidime produces an increase in the reversion of a +1 Lac frameshift mutation [14].
  • These cellular expression levels strongly affect -1 frameshifts induced by 4-NQO in runs of six guanine bases: mutagenicity was highest in the strain CC108, followed by strains YG2242 (chromosome deltadinB/F' dinB+), YG2247 (chromosome dinB+/F' deltadinB) and FC1243 (chromosome deltadinB/F' deltadinB) [16].
  • We show that DinB (DNA polymerase IV) catalyses accurate TLS over one such N2-dG adduct (N2-furfuryl-dG), and that DinB and its mammalian orthologue, DNA polymerase kappa, insert deoxycytidine (dC) opposite N2-furfuryl-dG with 10-15-fold greater catalytic proficiency than opposite undamaged dG [8].

Regulatory relationships of dinB


Other interactions of dinB

  • Reverse transcription-PCR analyses demonstrated that, in both cases, lexA and dinB constitute a single transcriptional unit [11].
  • Inactivation of polB, dinB, and umuD,C genes coding for "SOS" DNA polymerases did not affect significantly the efficiency or fidelity of translesion synthesis [18].
  • The fact that genes coding for translesion-synthesis (TLS) polymerases, particularly dinB and umuC homologs, have been conserved during evolution and the present analysis suggest that their activity is essential for the cellular survival and fitness [19].
  • Possible roles of the P. aeruginosa dinB, polA, and polC gene products in mutagenesis are discussed [3].

Analytical, diagnostic and therapeutic context of dinB


  1. Y-family DNA polymerases respond to DNA damage-independent inhibition of replication fork progression. Godoy, V.G., Jarosz, D.F., Walker, F.L., Simmons, L.A., Walker, G.C. EMBO J. (2006) [Pubmed]
  2. Multiple pathways for SOS-induced mutagenesis in Escherichia coli: an overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA. Kim, S.R., Maenhaut-Michel, G., Yamada, M., Yamamoto, Y., Matsui, K., Sofuni, T., Nohmi, T., Ohmori, H. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  3. Role of Pseudomonas aeruginosa dinB-Encoded DNA Polymerase IV in Mutagenesis. Sanders, L.H., Rockel, A., Lu, H., Wozniak, D.J., Sutton, M.D. J. Bacteriol. (2006) [Pubmed]
  4. SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. McKenzie, G.J., Lee, P.L., Lombardo, M.J., Hastings, P.J., Rosenberg, S.M. Mol. Cell (2001) [Pubmed]
  5. The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagenesis. Wagner, J., Gruz, P., Kim, S.R., Yamada, M., Matsui, K., Fuchs, R.P., Nohmi, T. Mol. Cell (1999) [Pubmed]
  6. All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. Napolitano, R., Janel-Bintz, R., Wagner, J., Fuchs, R.P. EMBO J. (2000) [Pubmed]
  7. Stationary-phase mutation in the bacterial chromosome: recombination protein and DNA polymerase IV dependence. Bull, H.J., Lombardo, M.J., Rosenberg, S.M. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  8. A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates. Jarosz, D.F., Godoy, V.G., Delaney, J.C., Essigmann, J.M., Walker, G.C. Nature (2006) [Pubmed]
  9. Translesional synthesis past acetylaminofluorene-derived DNA adducts catalyzed by human DNA polymerase kappa and Escherichia coli DNA polymerase IV. Suzuki, N., Ohashi, E., Hayashi, K., Ohmori, H., Grollman, A.P., Shibutani, S. Biochemistry (2001) [Pubmed]
  10. Involvement of Y-family DNA polymerases in mutagenesis caused by oxidized nucleotides in Escherichia coli. Yamada, M., Nunoshiba, T., Shimizu, M., Gruz, P., Kamiya, H., Harashima, H., Nohmi, T. J. Bacteriol. (2006) [Pubmed]
  11. Geobacter sulfurreducens has two autoregulated lexA genes whose products do not bind the recA promoter: differing responses of lexA and recA to DNA damage. Jara, M., Núñez, C., Campoy, S., Fernández de Henestrosa, A.R., Lovley, D.R., Barbé, J. J. Bacteriol. (2003) [Pubmed]
  12. The dinB operon and spontaneous mutation in Escherichia coli. McKenzie, G.J., Magner, D.B., Lee, P.L., Rosenberg, S.M. J. Bacteriol. (2003) [Pubmed]
  13. The bacillus subtilis dinR gene codes for the analogue of Escherichia coli LexA. Purification and characterization of the DinR protein. Miller, M.C., Resnick, J.B., Smith, B.T., Lovett, C.M. J. Biol. Chem. (1996) [Pubmed]
  14. SOS-independent induction of dinB transcription by beta-lactam-mediated inhibition of cell wall synthesis in Escherichia coli. Pérez-Capilla, T., Baquero, M.R., Gómez-Gómez, J.M., Ionel, A., Martín, S., Blázquez, J. J. Bacteriol. (2005) [Pubmed]
  15. The damage-inducible (din) genes of Escherichia coli are induced by various genotoxins in a different way. Oh, T.J., Lee, C.W., Kim, I.G. Microbiol. Res. (1999) [Pubmed]
  16. Roles of chromosomal and episomal dinB genes encoding DNA pol IV in targeted and untargeted mutagenesis in Escherichia coli. Kim, S.R., Matsui, K., Yamada, M., Gruz, P., Nohmi, T. Mol. Genet. Genomics (2001) [Pubmed]
  17. Polyphosphate kinase regulates error-prone replication by DNA polymerase IV in Escherichia coli. Stumpf, J.D., Foster, P.L. Mol. Microbiol. (2005) [Pubmed]
  18. Responses to the major acrolein-derived deoxyguanosine adduct in Escherichia coli. Yang, I.Y., Hossain, M., Miller, H., Khullar, S., Johnson, F., Grollman, A., Moriya, M. J. Biol. Chem. (2001) [Pubmed]
  19. Polymorphism of genes encoding SOS polymerases in natural populations of Escherichia coli. Bjedov, I., Lecointre, G., Tenaillon, O., Vaury, C., Radman, M., Taddei, F., Denamur, E., Matic, I. DNA Repair (Amst.) (2003) [Pubmed]
WikiGenes - Universities