The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

hslJ  -  heat-inducible lipoprotein involved in...

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK1376, JW1374, ydbI
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of hslJ

  • The LysR-type transcriptional regulator CysB controls the repression of hslJ transcription in Escherichia coli [1].
  • Class I heat-inducible genes in Bacillus subtilis consist of the heptacistronic dnaK and the bicistronic groE operon and form the CIRCE regulon [2].
  • We have cloned wild-type and mutant alleles of the T4 regA gene under control of the heat-inducible, plasmid-borne leftward promoter (PL) of phage lambda [3].
  • High-frequency transfer lines of rare phages carrying the fla genes were isolated by inducing a strain carrying a heat-inducible lambda prophage near the his genes and selecting by transduction of a fla deletion strain [4].
  • Reported here is the production of recombinant human rhinovirus 14 (HRV14) 2A protease from bacterial cells transformed with a heat-inducible plasmid containing the HRV14 2A cDNA sequence [5].
 

High impact information on hslJ

  • We propose that the sigma E regulon is involved in processes that occur in extracytoplasmic compartments and that these two heat-inducible regulons may have distinct but complementary roles of monitoring the state of proteins in the cytoplasm (sigma 32) and outer membrane (sigma E) [6].
  • The rpoH gene of Escherichia coli encodes sigma 32, the 32-kD sigma-factor responsible for the heat-inducible transcription of the heat shock genes. rpoH is transcribed from at least three promoters [7].
  • Hence, the mutation defines a (regulatory) gene, designated hin (heat shock induction), whose product is required for active transcription of a set of heat-inducible operons in E. coli [8].
  • The results indicate that mutations, deletions, or substitutions of either the distal or the proximal (CT)n element affect the chromatin structure and heat-inducible expression of the transgenes [9].
  • Chromatin structure of the transgenes was analyzed (prior to gene activation) by DNase I or restriction enzyme treatment of isolated nuclei, and heat-inducible expression was monitored by measuring beta-galactosidase activity [9].
 

Chemical compound and disease context of hslJ

 

Biological context of hslJ

 

Anatomical context of hslJ

  • The leishmania heat-inducible proteins of M(r) 65-67,000 are expressed at relatively high levels in infected macrophages (Infection and Immunity 1993, 61, 3265-3272) and may be important targets of the host response [18].
 

Associations of hslJ with chemical compounds

  • Interallelic complementation of characterized CysB mutants I33N and S277Ter partially restored the repression of hslJ transcription and the consequent novobiocin sensitivity, but did not complement the cysteine auxotrophy [1].
 

Other interactions of hslJ

 

Analytical, diagnostic and therapeutic context of hslJ

References

  1. The LysR-type transcriptional regulator CysB controls the repression of hslJ transcription in Escherichia coli. Jovanovic, M., Lilic, M., Savic, D.J., Jovanovic, G. Microbiology (Reading, Engl.) (2003) [Pubmed]
  2. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. Mogk, A., Homuth, G., Scholz, C., Kim, L., Schmid, F.X., Schumann, W. EMBO J. (1997) [Pubmed]
  3. Translational repression: biological activity of plasmid-encoded bacteriophage T4 RegA protein. Miller, E.S., Karam, J., Dawson, M., Trojanowska, M., Gauss, P., Gold, L. J. Mol. Biol. (1987) [Pubmed]
  4. Isolation of specialized lambda transducing bacteriophages for flagellar genes (fla) of Escherichia coli K-12. Komeda, Y., Shimada, K., Iino, T. J. Virol. (1977) [Pubmed]
  5. Enzymatic characterization of refolded human rhinovirus type 14 2A protease expressed in Escherichia coli. Wang, Q.M., Johnson, R.B., Cox, G.A., Villarreal, E.C., Churgay, L.M., Hale, J.E. J. Virol. (1998) [Pubmed]
  6. The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Mecsas, J., Rouviere, P.E., Erickson, J.W., Donohue, T.J., Gross, C.A. Genes Dev. (1993) [Pubmed]
  7. Identification of the sigma E subunit of Escherichia coli RNA polymerase: a second alternate sigma factor involved in high-temperature gene expression. Erickson, J.W., Gross, C.A. Genes Dev. (1989) [Pubmed]
  8. Genetic control of heat-shock protein synthesis and its bearing on growth and thermal resistance in Escherichia coli K-12. Yamamori, T., Yura, T. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  9. (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene. Lu, Q., Wallrath, L.L., Granok, H., Elgin, S.C. Mol. Cell. Biol. (1993) [Pubmed]
  10. Isolation of specialized transducing bacteriophage lambda carrying genes of the L-arabinose operon of Escherichia coli B/r. Boulter, J., Lee, N. J. Bacteriol. (1975) [Pubmed]
  11. Isolation of specialized transducing bacteriophages carrying deletions of the regulatory region of the Escherichia coli K-12 tryptophan operon. Jones, B.B., Reznikoff, W.S. J. Bacteriol. (1976) [Pubmed]
  12. Construction, expression and characterisation of a single-chain diabody derived from a humanised anti-Lewis Y cancer targeting antibody using a heat-inducible bacterial secretion vector. Power, B.E., Caine, J.M., Burns, J.E., Shapira, D.R., Hattarki, M.K., Tahtis, K., Lee, F.T., Smyth, F.E., Scott, A.M., Kortt, A.A., Hudson, P.J. Cancer Immunol. Immunother. (2001) [Pubmed]
  13. Heat-inducible expression of a reporter gene detected by transient assay in zebrafish. Adám, A., Bártfai, R., Lele, Z., Krone, P.H., Orbán, L. Exp. Cell Res. (2000) [Pubmed]
  14. A facile and efficient method to achieve LacZ overproduction by the expression vector carrying the thermoregulated promoter and plasmid copy number. Chao, Y.P., Wen, C.S., Wang, J.Y. Biotechnol. Prog. (2004) [Pubmed]
  15. Hsp31, the Escherichia coli yedU gene product, is a molecular chaperone whose activity is inhibited by ATP at high temperatures. Sastry, M.S., Korotkov, K., Brodsky, Y., Baneyx, F. J. Biol. Chem. (2002) [Pubmed]
  16. Overexpression, purification, and characterization of Escherichia coli bacteriophage PRD1 DNA polymerase. In vitro synthesis of full-length PRD1 DNA with purified proteins. Savilahti, H., Caldentey, J., Lundström, K., Syväoja, J.E., Bamford, D.H. J. Biol. Chem. (1991) [Pubmed]
  17. Post-transcriptional regulation of the groEL1 gene of Streptomyces albus. Servant, P., Thompson, C.J., Mazodier, P. Mol. Microbiol. (1994) [Pubmed]
  18. Leishmania major: molecular cloning, sequencing, and expression of the heat shock protein 60 gene reveals unique carboxy terminal peptide sequences. Rey-Ladino, J.A., Joshi, P.B., Singh, B., Gupta, R., Reiner, N.E. Exp. Parasitol. (1997) [Pubmed]
  19. Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE, dnaJ, and a new heat shock gene. Narberhaus, F., Giebeler, K., Bahl, H. J. Bacteriol. (1992) [Pubmed]
  20. Heat-inducible reactivation of UV-damaged bacteriophage lambda. Calsou, P., Salles, B. Mol. Gen. Genet. (1991) [Pubmed]
  21. Cloning and characterization of the groE heat-shock operon of the marine bacterium Vibrio harveyi. Kuchanny-Ardigò, D., Lipińska, B. Microbiology (Reading, Engl.) (2003) [Pubmed]
  22. Effects of reduced amount of RNA polymerase sigma factor on gene expression and growth of Escherichia coli: studies of the rpoD450 (amber) mutation. Osawa, T., Yura, T. Mol. Gen. Genet. (1981) [Pubmed]
  23. The ClpB protein from Campylobacter jejuni: molecular characterization of the encoding gene and antigenicity of the recombinant protein. Thies, F.L., Karch, H., Hartung, H.P., Giegerich, G. Gene (1999) [Pubmed]
  24. Transcriptional analysis of the ostA/imp gene involved in organic solvent sensitivity in Escherichia coli. Ohtsu, I., Kakuda, N., Tsukagoshi, N., Dokyu, N., Takagi, H., Wachi, M., Aono, R. Biosci. Biotechnol. Biochem. (2004) [Pubmed]
  25. Sequence analysis and regulation of the htrA gene of Escherichia coli: a sigma 32-independent mechanism of heat-inducible transcription. Lipinska, B., Sharma, S., Georgopoulos, C. Nucleic Acids Res. (1988) [Pubmed]
  26. Characterization of the Bradyrhizobium japonicum ftsH gene and its product. Narberhaus, F., Urech, C., Hennecke, H. J. Bacteriol. (1999) [Pubmed]
  27. Replicating adenoviral vector-mediated transfer of a heat-inducible double suicide gene for gene therapy. Lee, Y.J., Galoforo, S.S., Battle, P., Lee, H., Corry, P.M., Jessup, J.M. Cancer Gene Ther. (2001) [Pubmed]
  28. Heat effect on the structure and activity of the recombinant glutamate dehydrogenase from a hyperthermophilic archaeon Pyrococcus horikoshii. Wang, S., Feng, Y., Zhang, Z., Zheng, B., Li, N., Cao, S., Matsui, I., Kosugi, Y. Arch. Biochem. Biophys. (2003) [Pubmed]
 
WikiGenes - Universities