The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

grpE  -  heat shock protein

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK2610, JW2594
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of grpE

 

High impact information on grpE

 

Chemical compound and disease context of grpE

  • The effects of temperature, growth stage, and inducer (ethanol) concentration on the kinetics and magnitude of the stress response were investigated by using an Escherichia coli strain with the grpE heat shock promoter fused to the Vibrio fischeri lux genes [11].
 

Biological context of grpE

  • In complete media, the growth of the lambda pi A66 phage (capable of replicating in E. coli dnaJ, dnaK, and grpE missense mutants at 30 degrees C), as well as efficiency of transformation by the lambda pi A66 plasmid, is significantly decreased in a dnaJ259 cbpA::kan double mutant [12].
  • Additional heat-inducible transcription start sites were located 69 bases upstream of orfA and 87 bases upstream of grpE; the corresponding promoter regions showed less similarity to other known promoter sequences [13].
  • The downstream ORFs showed high homology to the grpE and dnaK genes of other prokaryotes [14].
  • A puromycin-resistance cassette (pac cassette) was inserted in the EcoRI site of Int alpha already inserted in pUC18, to obtain a vector which integrated the pac cassette in the chromosome between grpE and dnaK [15].
  • Heat shock proteins and RNA polymerase sigma factor play an important role in protecting cells against environmental stresses, including starvation, osmotic and oxidative stresses, and cold shock [16].
 

Anatomical context of grpE

 

Associations of grpE with chemical compounds

  • The effect of ATP on the dnaK-grpE complex was also observed during sedimentation of the two proteins in glycerol gradients [19].
  • Heat shock also activated this gene while kinetin, ABA and NaCl treatment did not result in MsCPK3 mRNA accumulation [20].
 

Other interactions of grpE

 

Analytical, diagnostic and therapeutic context of grpE

References

  1. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C., Zylicz, M. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  2. Chaperone-like activities of the CsaA protein of Bacillus subtilis. Müller, J.P., Bron, S., Venema, G., van Dijl, J.M. Microbiology (Reading, Engl.) (2000) [Pubmed]
  3. A transducing lambda phage carrying grpE, a bacterial gene necessary for lambda DNA replication, and two ribosomal protein genes, rpsP (S16) and rplS (L19). Saito, H., Nakamura, Y., Uchida, H. Mol. Gen. Genet. (1978) [Pubmed]
  4. Analysis of the DnaK molecular chaperone system of Francisella tularensis. Zuber, M., Hoover, T.A., Dertzbaugh, M.T., Court, D.L. Gene (1995) [Pubmed]
  5. A novel dnaK operon from Porphyromonas gingivalis. Yoshida, A., Nakano, Y., Yamashita, Y., Oho, T., Shibata, Y., Ohishi, M., Koga, T. FEBS Lett. (1999) [Pubmed]
  6. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Straus, D., Walter, W., Gross, C.A. Genes Dev. (1990) [Pubmed]
  7. Structure-function analysis of the Escherichia coli GrpE heat shock protein. Wu, B., Wawrzynow, A., Zylicz, M., Georgopoulos, C. EMBO J. (1996) [Pubmed]
  8. Targeting of GroEL to SecA on the cytoplasmic membrane of Escherichia coli. Bochkareva, E.S., Solovieva, M.E., Girshovich, A.S. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  9. Heat shock response in Escherichia coli influences cell division. Tsuchido, T., VanBogelen, R.A., Neidhardt, F.C. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  10. Heat shock regulatory gene (htpR) of Escherichia coli is required for growth at high temperature but is dispensable at low temperature. Yura, T., Tobe, T., Ito, K., Osawa, T. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  11. Characterization of the stress response of a bioluminescent biological sensor in batch and continuous cultures. Rupani, S.P., Gu, M.B., Konstantinov, K.B., Dhurjati, P.S., Van Dyk, T.K., LaRossa, R.A. Biotechnol. Prog. (1996) [Pubmed]
  12. The cbpA chaperone gene function compensates for dnaJ in lambda plasmid replication during amino acid starvation of Escherichia coli. Wegrzyn, A., Taylor, K., Wegrzyn, G. J. Bacteriol. (1996) [Pubmed]
  13. Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE, dnaJ, and a new heat shock gene. Narberhaus, F., Giebeler, K., Bahl, H. J. Bacteriol. (1992) [Pubmed]
  14. Cloning and sequence analysis of the dnaK gene region of Lactococcus lactis subsp. lactis. Eaton, T., Shearman, C., Gasson, M. J. Gen. Microbiol. (1993) [Pubmed]
  15. Integration of foreign DNA in an intergenic region of the archaeon Methanosarcina mazei without effect on transcription of adjacent genes. de Macario, E.C., Guerrini, M., Dugan, C.B., Macario, A.J. J. Mol. Biol. (1996) [Pubmed]
  16. Effects of environmental stresses on the activities of the uspA, grpE and rpoS promoters of Escherichia coli O157:H7. Gawande, P.V., Griffiths, M.W. Int. J. Food Microbiol. (2005) [Pubmed]
  17. Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing Heat-shock proteins. Thomas, J.G., Baneyx, F. J. Biol. Chem. (1996) [Pubmed]
  18. Heat shock induction by a misassembled cytoplasmic membrane protein complex in Escherichia coli. Mourez, M., Skouloubris, S., Betton, J.M., Dassa, E. Mol. Microbiol. (1997) [Pubmed]
  19. The grpE protein of Escherichia coli. Purification and properties. Zylicz, M., Ang, D., Georgopoulos, C. J. Biol. Chem. (1987) [Pubmed]
  20. Auxin and heat shock activation of a novel member of the calmodulin like domain protein kinase gene family in cultured alfalfa cells. Davletova, S., Mészáros, T., Miskolczi, P., Oberschall, A., Török, K., Magyar, Z., Dudits, D., Deák, M. J. Exp. Bot. (2001) [Pubmed]
  21. The essential Escherichia coli msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE. Wu, B., Georgopoulos, C., Ang, D. J. Bacteriol. (1992) [Pubmed]
  22. Growth history influences starvation-induced expression of uspA, grpE, and rpoS and subsequent cryotolerance in Escherichia coli O157:H7. Gawande, P.V., Griffiths, M.W. J. Food Prot. (2005) [Pubmed]
  23. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo. Tatsuta, T., Tomoyasu, T., Bukau, B., Kitagawa, M., Mori, H., Karata, K., Ogura, T. Mol. Microbiol. (1998) [Pubmed]
  24. Sequence analysis and transcriptional regulation of the Escherichia coli grpE gene, encoding a heat shock protein. Lipinska, B., King, J., Ang, D., Georgopoulos, C. Nucleic Acids Res. (1988) [Pubmed]
  25. Cloning, molecular characterization, and transcriptional analysis of dnaK operon in a methylotrophic bacterium Methylovorus sp. strain SS1 DSM 11726. Eom, C.Y., Park, S.T., Kim, E., Ro, Y.T., Kim, S.W., Kim, Y.M. Mol. Cells (2002) [Pubmed]
  26. Heat shock proteins and inflammatory acne vulgaris: molecular cloning, overexpression and purification of a propionibacterium acnes GroEL and DnaK homologue. Farrar, M.D., Ingham, E., Holland, K.T. FEMS Microbiol. Lett. (2000) [Pubmed]
  27. Heat shock and osmotically dependent steps by DNA uptake after Escherichia coli electroporation. Antonov, P.A., Maximova, V.A., Pancheva, R.P. Biochim. Biophys. Acta (1993) [Pubmed]
 
WikiGenes - Universities